Kallet RH, Matthay MA (2013) Hyperoxic acute lung injury. Respir Care 58(1):123–141
Amarelle L, Quintela L, Hurtado J et al (2021) Hyperoxia and lungs: what we have learned from animal models. Front Med (Lausanne) 8:606678
Sidramagowda Patil S, Hernández-Cuervo H, Fukumoto J et al (2020) Alda-1 Attenuates Hyperoxia-Induced Acute Lung Injury in Mice. Front Pharmacol 11:597942
Grimm SL, Stading RE, Robertson MJ et al (2023) Loss of cytochrome P450 (CYP)1B1 mitigates hyperoxia response in adult mouse lung by reprogramming metabolism and translation. Redox Biol 64:102790
Article PubMed PubMed Central CAS Google Scholar
Sohn MH, Kang MJ, Matsuura H et al (2010) The chitinase-like proteins breast regression protein-39 and YKL-40 regulate hyperoxia-induced acute lung injury. Am J Respir Crit Care Med 182(7):918–928
Article PubMed PubMed Central CAS Google Scholar
Lilien TA, van Meenen DMP, Schultz MJ et al (2023) Hyperoxia-induced lung injury in acute respiratory distress syndrome: what is its relative impact? Am J Physiol Lung Cell Mol Physiol 325(1):L9-l16
Article PubMed CAS Google Scholar
Ren Y, Qin S, Liu X et al (2023) Hyperoxia can Induce Lung Injury by Upregulating AECII Autophagy and Apoptosis Via the mTOR Pathway. Mol Biotechnol
Mach WJ, Thimmesch AR, Pierce JT et al (2011) Consequences of hyperoxia and the toxicity of oxygen in the lung. Nurs Res Pract 2011:260482
PubMed PubMed Central Google Scholar
Hong JY, Kim MN, Kim EG et al (2021) Clusterin Deficiency Exacerbates Hyperoxia-Induced Acute Lung Injury. Cells 10(4)
Kim HR, Kim MN, Kim EG et al (2023) NLRX1 knockdown attenuates pro-apoptotic signaling and cell death in pulmonary hyperoxic acute injury. Sci Rep 13(1):3441
Article PubMed PubMed Central CAS Google Scholar
Coarfa C, Grimm SL, Katz T et al (2020) Epigenetic response to hyperoxia in the neonatal lung is sexually dimorphic. Redox Biol 37:101718
Article PubMed PubMed Central CAS Google Scholar
Bik-Multanowski M, Revhaug C, Grabowska A et al (2018) Hyperoxia induces epigenetic changes in newborn mice lungs. Free Radic Biol Med 121:51–56
Article PubMed CAS Google Scholar
Zhu Y, Fu J, Yang H et al (2015) Hyperoxia-induced methylation decreases RUNX3 in a newborn rat model of bronchopulmonary dysplasia. Respir Res 16(1):75
Article PubMed PubMed Central Google Scholar
Zheng M, Hu C, Wu M et al (2021) Emerging role of SIRT2 in non-small cell lung cancer. Oncol Lett 22(4):731
Article PubMed PubMed Central Google Scholar
North BJ, Verdin E (2007) Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS ONE 2(8):e784
Article PubMed PubMed Central Google Scholar
Chen G, Huang P, Hu C (2020) The role of SIRT2 in cancer: a novel therapeutic target. Int J Cancer 147(12):3297–3304
Article PubMed CAS Google Scholar
Wang Y, Yang J, Hong T et al (2019) SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 55:100961
Article PubMed CAS Google Scholar
Manjula R, Anuja K, Alcain FJ (2020) SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front Pharmacol 11:585821
Article PubMed CAS Google Scholar
Al-Tamari HM, Dabral S, Schmall A et al (2018) FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis. EMBO Mol Med 10(2):276–293
Article PubMed CAS Google Scholar
Liu Y, Ao X, Ding W et al (2018) Critical role of FOXO3a in carcinogenesis. Mol Cancer 17(1):104
Article PubMed PubMed Central Google Scholar
Wang X, Hu S, Liu L (2017) Phosphorylation and acetylation modifications of FOXO3a: Independently or synergistically? Oncol Lett 13(5):2867–2872
Article PubMed PubMed Central CAS Google Scholar
Wang Y, Mu Y, Zhou X et al (2017) SIRT2-mediated FOXO3a deacetylation drives its nuclear translocation triggering FasL-induced cell apoptosis during renal ischemia reperfusion. Apoptosis 22(4):519–530
Article PubMed CAS Google Scholar
Wang Z, Yu T, Huang P (2016) Post-translational modifications of FOXO family proteins (Review). Mol Med Rep 14(6):4931–4941
Article PubMed CAS Google Scholar
Kim EG, Leem JS, Baek SM et al (2022) Interleukin-18 receptor α modulates the T cell response in food allergy. Allergy Asthma Immunol Res 14(4):424–438
Article PubMed PubMed Central CAS Google Scholar
Wang F, Nguyen M, Qin FX et al (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6(4):505–514
Article PubMed CAS Google Scholar
Zhu C, Dong X, Wang X et al (2022) Multiple roles of SIRT2 in regulating physiological and pathological signal transduction. Genet Res (Camb) 2022:9282484
Gong H, Zheng C, Lyu X et al (2021) Inhibition of Sirt2 alleviates fibroblasts activation and pulmonary fibrosis via Smad2/3 pathway. Front Pharmacol 12:756131
Article PubMed PubMed Central CAS Google Scholar
Lee YG, Reader BF, Herman D et al (2019) Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight 4(4)
Jung YJ, Park W, Kang KP et al (2020) SIRT2 is involved in cisplatin-induced acute kidney injury through regulation of mitogen-activated protein kinase phosphatase-1. Nephrol Dial Transplant 35(7):1145–1156
Article PubMed CAS Google Scholar
Obst S, Herz J, Alejandre Alcazar MA et al (2022) Perinatal hyperoxia and developmental consequences on the lung-brain axis. Oxid Med Cell Longev 2022:5784146
Article PubMed PubMed Central Google Scholar
Alam MA, Betal SGN, Aghai ZH et al (2019) Hyperoxia causes miR199a-5p-mediated injury in the developing lung. Pediatr Res 86(5):579–588
Article PubMed CAS Google Scholar
Bhandari V, Elias JA (2006) Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med 41(1):4–18
Article PubMed CAS Google Scholar
Czabotar PE, Lessene G, Strasser A et al (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63
Article PubMed CAS Google Scholar
Park NW, Lee ES, Ha KB et al (2023) Umbelliferone ameliorates hepatic steatosis and lipid-induced ER stress in high-fat diet-induced obese mice. Yonsei Med J 64(4):243–250
Comments (0)