Breast cancer scoring based on a multiplexed profiling of soluble and cell-associated (immune) markers facilitates the prediction of pembrolizumab therapy

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. https://doi.org/10.3322/caac.21763.

Article  PubMed  Google Scholar 

Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, et al. Neoadjuvant Atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet. 2020;396:1090–100. https://doi.org/10.1016/S0140-6736(20)31953-X.

Article  CAS  PubMed  Google Scholar 

Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in advanced Triple-Negative breast Cancer. N Engl J Med. 2018;379:2108–21. https://doi.org/10.1056/NEJMoa1809615.

Article  CAS  PubMed  Google Scholar 

Emens LA, Adams S, Barrios CH, Diéras V, Iwata H, Loi S, et al. First-line Atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann Oncol. 2021;32:983–93. https://doi.org/10.1016/j.annonc.2021.05.355.

Article  CAS  PubMed  Google Scholar 

Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im S-A, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396:1817–28. https://doi.org/10.1016/S0140-6736(20)32531-9.

Article  PubMed  Google Scholar 

Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al. Pembrolizumab for early Triple-Negative breast Cancer. N Engl J Med. 2020;382:810–21. https://doi.org/10.1056/NEJMoa1910549.

Article  CAS  PubMed  Google Scholar 

Du H, Yi Z, Wang L, Li Z, Niu B, Ren G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol. 2020;78:106113. https://doi.org/10.1016/j.intimp.2019.106113.

Article  CAS  PubMed  Google Scholar 

Aggarwal V, Workman CJ, Vignali DAA. LAG-3 as the third checkpoint inhibitor. Nat Immunol. 2023;24:1415–22. https://doi.org/10.1038/s41590-023-01569-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386:24–34. https://doi.org/10.1056/NEJMoa2109970.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276:97–111. https://doi.org/10.1111/imr.12520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kołodzińska K, Dwernicka W, et al. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother. 2023;72:3405–25. https://doi.org/10.1007/s00262-023-03516-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8 + T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117:4501–10. https://doi.org/10.1182/blood-2010-10-310425.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu G, Wang S, Wang S, Ding Q, Huang L. LAG-3 + tumor-infiltrating lymphocytes ameliorates overall survival in triple-negative breast cancer patients. Front Oncol. 2022;12:986903. https://doi.org/10.3389/fonc.2022.986903.

Article  CAS  PubMed  Google Scholar 

Saleh RR, Peinado P, Fuentes-Antrás J, Pérez-Segura P, Pandiella A, Amir E, Ocaña A. Prognostic value of Lymphocyte-Activation gene 3 (LAG3) in cancer: A Meta-Analysis. Front Oncol. 2019;9:1040. https://doi.org/10.3389/fonc.2019.01040.

Article  PubMed  PubMed Central  Google Scholar 

Gomes de Morais AL, Cerdá S, de Miguel M. New checkpoint inhibitors on the road: targeting TIM-3 in solid tumors. Curr Oncol Rep. 2022;24:651–8. https://doi.org/10.1007/s11912-022-01218-y.

Article  CAS  PubMed  Google Scholar 

Park E-J, Lee C-W. Soluble receptors in cancer: mechanisms, clinical significance, and therapeutic strategies. Exp Mol Med. 2024;56:100–9. https://doi.org/10.1038/s12276-023-01150-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang J, Jochems C, Anderson AM, Talaie T, Jales A, Madan RA, et al. Soluble CD27-pool in humans May contribute to T cell activation and tumor immunity. J Immunol. 2013;190:6250–8. https://doi.org/10.4049/jimmunol.1300022.

Article  CAS  PubMed  Google Scholar 

Gorgulho J, Loosen SH, Masood R, Giehren F, Pagani F, Buescher G, et al. Soluble and EV-bound CD27 act as antagonistic biomarkers in patients with solid tumors undergoing immunotherapy. J Exp Clin Cancer Res. 2024;43:298. https://doi.org/10.1186/s13046-024-03215-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568. https://doi.org/10.3389/fimmu.2021.636568.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dusenbery AC, Maniaci JL, Hillerson ND, Dill EA, Bullock TN, Mills AM. MHC class I loss in Triple-negative breast cancer: A potential barrier to PD-1/PD-L1 checkpoint inhibitors. Am J Surg Pathol. 2021;45:701–7. https://doi.org/10.1097/PAS.0000000000001653.

Article  PubMed  Google Scholar 

Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X.

Article  PubMed  Google Scholar 

Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, et al. Tumor-Infiltrating lymphocytes and prognosis: A pooled individual patient analysis of Early-Stage Triple-Negative breast cancers. J Clin Oncol. 2019;37:559–69. https://doi.org/10.1200/JCO.18.01010.

Article  PubMed  PubMed Central  Google Scholar 

Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, et al. Long-term clinical outcomes and biomarker analyses of Atezolizumab therapy for patients with metastatic Triple-Negative breast cancer: A phase 1 study. JAMA Oncol. 2019;5:74–82. https://doi.org/10.1001/jamaoncol.2018.4224.

Article  PubMed  Google Scholar 

Loi S, Adams S, Schmid P, Cortés J, Cescon DW, Winer EP, et al. Relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple-negative breast cancer (mTNBC): results from KEYNOTE-086. Ann Oncol. 2017;28:v608. https://doi.org/10.1093/annonc/mdx440.005.

Article  Google Scholar 

Liu J-N, Kong X-S, Huang T, Wang R, Li W, Chen Q-F. Clinical implications of aberrant PD-1 and CTLA4 expression for Cancer immunity and prognosis: A Pan-Cancer study. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.02048.

Article  PubMed  PubMed Central  Google Scholar 

Thum E, Shao Z, Schwarz H. CD137, implications in immunity and potential for therapy. Front Biosci (Landmark Ed). 2009;14:4173–88. https://doi.org/10.2741/3521.

Article  CAS  PubMed  Google Scholar 

Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131:49–57. https://doi.org/10.1182/blood-2017-06-741041.

Article  CAS 

Comments (0)

No login
gif