Brain-derived neurotrophic factor (BDNF) changes in rodent models of schizophrenia induced by ketamine: a systematic review

Abbasi N, Mirabzadeh Y, Khesali G, Ebrahimkhani Z, Karimi H, Vaseghi S (2024) Chronic REM sleep deprivation leads to manic- and OCD-related behaviors, and decreases hippocampal BDNF expression in female rats. Psychopharmacology. https://doi.org/10.1007/s00213-024-06566-0

Article  PubMed  Google Scholar 

Ahmed HI, Abdel-Sattar SA, Zaky HS (2018) Vinpocetine halts ketamine-induced schizophrenia-like deficits in rats: impact on BDNF and GSK-3beta/beta-catenin pathway. Naunyn Schmiedebergs Arch Pharmacol 391(12):1327–1338. https://doi.org/10.1007/s00210-018-1552-y

Article  CAS  PubMed  Google Scholar 

Angelucci F, Ricci V, Gelfo F, Martinotti G, Brunetti M, Sepede G, Signorelli M, Aguglia E, Pettorruso M, Vellante F, Di Giannantonio M, Caltagirone C (2014) BDNF serum levels in subjects developing or not post-traumatic stress disorder after trauma exposure. Brain Cogn 84(1):118–122. https://doi.org/10.1016/j.bandc.2013.11.012

Article  PubMed  Google Scholar 

Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95. https://doi.org/10.1038/nature10130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bassett AS, Chow EW (2008) Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep 10(2):148–157. https://doi.org/10.1007/s11920-008-0026-1

Becker A, Grecksch G, Schwegler H, Roskoden T (2008) Expression of mRNA of neurotrophic factors and their receptors are significantly altered after subchronic ketamine treatment. Med Chem 4(3):256–263. https://doi.org/10.2174/157340608784325124

Article  CAS  PubMed  Google Scholar 

Becker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27(4):687–700. https://doi.org/10.1016/S0278-5846(03)00080-0

Article  CAS  PubMed  Google Scholar 

Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AO, Umukoro S, Iwalewa EO (2018) Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Res Bull 139:292–306. https://doi.org/10.1016/j.brainresbull.2018.03.006

Article  CAS  PubMed  Google Scholar 

Ben-Azu B, Uruaka CI, Ajayi AM, Jarikre TA, Nwangwa KE, Chilaka KC, Chijioke BS, Omonyeme MG, Ozege CB, Ofili EC, Warekoromor EB, Edigbue NL, Esiekpe UV, Akaenyi DE, Agu GO (2023) Reversal and preventive pleiotropic mechanisms involved in the antipsychotic-like effect of taurine, an essential beta-amino acid in ketamine-induced experimental schizophrenia in mice. Neurochem Res 48(3):816–829. https://doi.org/10.1007/s11064-022-03808-5

Article  CAS  PubMed  Google Scholar 

Canever L, Freire TG, Mastella GA, Damazio L, Gomes S, Fachim I, Michels C, Carvalho G, Godoi AK, Peterle BR, Gava FF, Valvassori SS, Budni J, Quevedo J, Zugno AI (2018) Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: the effects of FA deficient or FA supplemented diet during the neurodevelopmental phase. Prog Neuropsychopharmacol Biol Psychiatry 86:52–64. https://doi.org/10.1016/j.pnpbp.2018.05.014

Celia Moreira Borella V, Seeman MV, Carneiro Cordeiro R, Vieira dos Santos J, Matos R, de Souza M, de Sousa N, Fernandes E, Santos Monte A, Maria Mendes Vasconcelos S, Quinn JP, de Lucena DF, Carvalho AF, Macedo D (2016) Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine. Dev Neurobiol 76(5):519–532. https://doi.org/10.1002/dneu.22329

Article  CAS  PubMed  Google Scholar 

Chen SL, Lee SY, Chang YH, Chen SH, Chu CH, Tzeng NS, Lee IH, Chen PS, Yeh TL, Huang SY, Yang YK, Lu RB, Hong JS (2012) Inflammation in patients with schizophrenia: the therapeutic benefits of risperidone plus add-on dextromethorphan. J Neuroimmune Pharmacol 7(3):656–664. https://doi.org/10.1007/s11481-012-9382-z

Article  PubMed  PubMed Central  Google Scholar 

Choi M, Lee SH, Park MH, Kim YS, Son H (2017) Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats. Biochem Biophys Res Commun 489(4):420–425. https://doi.org/10.1016/j.bbrc.2017.05.157

Article  CAS  PubMed  Google Scholar 

Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, Harmin DA, Greenberg RS, Verdine VK, Zhou Z, Wetsel WC, West AE, Greenberg ME (2011) Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72(1):72–85. https://doi.org/10.1016/j.neuron.2011.08.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Correia AS, Cardoso A, Vale N (2023) BDNF Unveiled: exploring its role in major depression disorder serotonergic imbalance and associated stress conditions. Pharmaceutics 15 (8). https://doi.org/10.3390/pharmaceutics15082081

de Araujo FYR, Chaves Filho AJM, Nunes AM, de Oliveira GV, Gomes PXL, Vasconcelos GS, Carletti J, de Moraes MO, de Moraes ME, Vasconcelos SMM, de Sousa FCF, de Lucena DF, Macedo DS (2021) Involvement of anti-inflammatory, antioxidant, and BDNF up-regulating properties in the antipsychotic-like effect of the essential oil of Alpinia zerumbet in mice: a comparative study with olanzapine. Metab Brain Dis 36(8):2283–2297. https://doi.org/10.1007/s11011-021-00821-5

Article  CAS  PubMed  Google Scholar 

Derakhshanian S, Zhou M, Rath A, Barlow R, Bertrand S, DeGraw C, Lee C, Hasoon J, Kaye AD (2021) Role of ketamine in the treatment of psychiatric disorders. Health Psychol Res 9(1):25091. https://doi.org/10.52965/001c.25091

Article  PubMed  PubMed Central  Google Scholar 

Di Carlo P, Punzi G, Ursini G (2019) Brain-derived neurotrophic factor and schizophrenia. Psychiatr Genet 29(5):200–210. https://doi.org/10.1097/YPG.0000000000000237

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan JF, Tang ZH, Wang SY, Lei S, Zhang B, Tian SW (2021) Ketamine enhances novel object recognition memory reconsolidation via the BDNF/TrkB pathway in mice. Physiol Behav 242:113626. https://doi.org/10.1016/j.physbeh.2021.113626

Article  CAS  PubMed  Google Scholar 

Favalli G, Li J, Belmonte-de-Abreu P, Wong AH, Daskalakis ZJ (2012) The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res 46(1):1–11. https://doi.org/10.1016/j.jpsychires.2011.09.022

Article  PubMed  Google Scholar 

Gama CS, Canever L, Panizzutti B, Gubert C, Stertz L, Massuda R, Pedrini M, de Lucena DF, Luca RD, Fraga DB, Heylmann AS, Deroza PF, Zugno AI (2012) Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: a study in adolescent rats with ketamine-induced model of schizophrenia. Schizophr Res 141(2–3):162–167. https://doi.org/10.1016/j.schres.2012.08.002

Article  PubMed  Google Scholar 

Gholizadeh N, Dalimi A, Ghaffarifar F, Nader-Mohammadi M, Molavi P, Dadkhah M, Molaei S (2023) Berberine improves inhibitory avoidance memory impairment of Toxoplasma gondii-infected rat model of ketamine-induced schizophrenia. BMC Complement Med Ther 23(1):303. https://doi.org/10.1186/s12906-023-04107-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goto N, Yoshimura R, Kakeda S, Moriya J, Hayashi K, Ikenouchi-Sugita A, Umene-Nakano W, Hori H, Ueda N, Korogi Y, Nakamura J (2009) Associations between plasma levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) and negative symptoms or cognitive impairments in early-stage schizophrenia. Hum Psychopharmacol 24(8):639–645. https://doi.org/10.1002/hup.1070

Article  CAS  PubMed  Google Scholar 

Hany M, Rehman B, Rizvi A, Chapman J (2024) Schizophrenia. In: StatPearls. StatPearls Publishing, Treasure Island (FL). https://pubmed.ncbi.nlm.nih.gov/30969686/

Hernandez-Hernandez E, Ledesma-Corvi S, Jornet-Plaza J, Garcia-Fuster MJ (2024) Fast-acting antidepressant-like effects of ketamine in aged male rats. Pharmacol Rep 76(5):991–1000. https://doi.org/10.1007/s43440-024-00636-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308. https://doi.org/10.1176/ajp.148.10.1301

Article  CAS  PubMed  Google Scholar 

Jelen LA, Stone JM (2021) Ketamine for depression. Int Rev Psychiatry 33(3):207–228. https://doi.org/10.1080/09540261.2020.1854194

Article  PubMed  Google Scholar 

Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, O'Donovan M, Correll CU, Kane JM, van Os J, Insel TR (2015) Schizophrenia. Nat Rev Dis Primers 1:15067. https://doi.org/10.1038/nrdp.2015.67

Kalinichev M, Robbins MJ, Hartfield EM, Maycox PR, Moore SH, Savage KM, Austin NE, Jones DN (2008) Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats: a locomotor activity and gene induction study. Prog Neuropsychopharmacol Biol Psychiatry 32(2):414–422. https://doi.org/10.1016/j.pnpbp.2007.09.008

Comments (0)

No login
gif