Prolonged administration of letrozole induces polycystic ovary syndrome leading to osteoporosis in rats: model development and validation studies

Abramovich D, Irusta G, Bas D et al (2012) Angiopoietins/TIE2 System and VEGF are involved in ovarian function in a DHEA rat model of polycystic ovary syndrome. Endocrinology 153:3446–3456. https://doi.org/10.1210/EN.2012-1105

Article  CAS  PubMed  Google Scholar 

Atef MM, Abd-Ellatif RN, Emam MN et al (2019) Therapeutic potential of sodium selenite in letrozole induced polycystic ovary syndrome rat model: targeting mitochondrial approach (selenium in PCOS). Arch Biochem Biophys 671:245–254. https://doi.org/10.1016/J.ABB.2019.06.009

Article  CAS  PubMed  Google Scholar 

Baravalle C, Salvetti NR, Mira GA et al (2006) Microscopic characterization of follicular structures in letrozole-induced polycystic ovarian syndrome in the rat. Arch Med Res 37(7):830–839. https://doi.org/10.1016/j.arcmed.2006.04.006

Article  CAS  PubMed  Google Scholar 

Cai Y, Jun G, Zhuang X (2024) Metformin treatment reduces the incidence of osteoporosis: a two-sample Mendelian randomized study. Osteoporos Int 35(6):1089–1098. https://doi.org/10.1007/s00198-023-07013-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caldwell ASL, Middleton LJ, Jimenez M et al (2014) Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 155(8):3146–59. https://doi.org/10.1210/en.2014-1196

Article  CAS  PubMed  Google Scholar 

Cheng CH, Chen LR, Chen KH (2022) Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci 23(3):1376. https://doi.org/10.3390/ijms23031376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danduga RCSR, Kurapati AS, Shaik RA et al (2024) Synergistic amelioration of letrozole-induced polycystic ovary syndrome in rats: a therapeutic approach with apple cider vinegar and metformin combination. Reprod Sci 31:2861–2876. https://doi.org/10.1007/S43032-024-01545-4/METRICS

Article  CAS  PubMed  Google Scholar 

Dang CX, Wang D, Yu X et al (2022) Exploring the relationship between osteoporosis and polycystic ovary syndrome based on bioinformatics. Med (United States) 101(25):e29434. https://doi.org/10.1097/MD.0000000000029434

Article  CAS  Google Scholar 

Ding H, Zhang J, Zhang F et al (2021) Resistance to the insulin and elevated level of androgen: a major cause of polycystic ovary syndrome. Front Endocrinol (Lausanne) 12:1–14. https://doi.org/10.3389/fendo.2021.741764

Article  Google Scholar 

Eckmann KR, Kockler DR (2009) Aromatase inhibitors for ovulation and pregnancy in polycystic ovary syndrome. Ann Pharmacother 43(7–8):1338–1346. https://doi.org/10.1345/aph.1M096

Article  CAS  PubMed  Google Scholar 

Fauser BCJM, Tarlatzis F et al (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47. https://doi.org/10.1093/HUMREP/DEH098

Article  Google Scholar 

Kafali H, Iriadam M, Ozardali I, Demir N (2004) Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 35:103–108. https://doi.org/10.1016/J.ARCMED.2003.10.005

Article  CAS  PubMed  Google Scholar 

Khaled N, El-Bahy ASA, Radwan R et al (2019) Ocimum kilimandscharicum L. restores ovarian functions in letrozole - induced Polycystic Ovary Syndrome (PCOS) in rats: comparison with metformin. Life Sci 232:116640. https://doi.org/10.1016/J.LFS.2019.116640

Kim EJ, Jang M, Choi JH et al (2018) An improved dehydroepiandrosterone-induced rat model of polycystic ovary syndrome (Pcos): post-pubertal improve pcos’s features. Front Endocrinol (Lausanne) 9:1–7. https://doi.org/10.3389/FENDO.2018.00735/BIBTEX

Article  Google Scholar 

Krishnan A, Muthusami S (2017) Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol 232(2):R99–R113. https://doi.org/10.1530/JOE-16-0405

Article  CAS  PubMed  Google Scholar 

Krishnan A, Muthusami S, Periyasamy L et al (2020) Effect of DHT-induced hyperandrogenism on the pro-inflammatory cytokines in a rat model of polycystic ovary morphology. Medicina 56:100. https://doi.org/10.3390/medicina56030100

Article  PubMed  PubMed Central  Google Scholar 

Lentscher JA, Decherney AH (2021) Clinical presentation and diagnosis of polycystic ovarian syndrome. Clin Obstet Gynecol 64:3–11. https://doi.org/10.1097/GRF.0000000000000563

Article  PubMed  PubMed Central  Google Scholar 

Lujan ME, Chizen DR, Pierson RA (2008) Diagnostic criteria for polycystic ovary syndrome: pitfalls and controversies. J Obstet Gynaecol Canada 30(8):671–679. https://doi.org/10.1016/S1701-2163(16)32915-2

Article  Google Scholar 

Mancini A, Bruno C, Vergani E et al (2021) Oxidative stress and low-grade inflammation in polycystic ovary syndrome: controversies and new insights. Int J Mol Sci 22(4):1667. https://doi.org/10.3390/ijms22041667

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mannerås L, Cajander S, Holmäng A et al (2007) A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology 148(8):3781–3791. https://doi.org/10.1210/en.2007-0168

Article  CAS  PubMed  Google Scholar 

Marcondes FK, Bianchi FJ, Tanno AP (2002) Determination of the estrous cycle phases of rats: some helpful considerations. Brazilian J Biol 62(4A):609–14. https://doi.org/10.1590/S1519-69842002000400008

Article  CAS  Google Scholar 

Mills EG, Abbara A, Dhillo WS, Comninos AN (2023) Effects of distinct Polycystic Ovary Syndrome phenotypes on bone health. Front Endocrinol (Lausanne) 14:1163771. https://doi.org/10.3389/FENDO.2023.1163771/BIBTEX

Article  PubMed  Google Scholar 

Noroozzadeh M, Amiri M, Farhadi-Azar M, Ramezani Tehrani F (2022) Bone health in women with polycystic ovary syndrome: a narrative review. J Clin Densitom 25(4):606–614. https://doi.org/10.1016/j.jocd.2022.02.005

Article  PubMed  Google Scholar 

Osuka S, Nakanishi N, Murase T et al (2019) Animal models of polycystic ovary syndrome: a review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuropeptides. Reprod Med Biol 18:151–160. https://doi.org/10.1002/rmb2.12262

Article  PubMed  Google Scholar 

Parini P, Angelin B, Stavréus-Evers A et al (2000) Biphasic effects of the natural estrogen 17β-estradiol on hepatic cholesterol metabolism in intact female rats. Arterioscler Thromb Vasc Biol 20:1817–1823. https://doi.org/10.1161/01.ATV.20.7.1817/ASSET/423F53B4-770E-4B10-8AED-3EA96446BBE6/ASSETS/GRAPHIC/HQ0701375005.JPEG

Article  CAS  PubMed  Google Scholar 

Sanchez-Garrido MA, Tena-Sempere M (2020) Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab 35:00937. https://doi.org/10.1016/j.molmet.2020.01.001

Article  CAS  Google Scholar 

Shah MZ, Shrivastava VK (2023) Ameliorative effects of quercetin on endocrine and metabolic abnormalities associated with experimentally induced polycystic ovary syndrome in mice. Comparative Clin Patho 32:383–391. https://doi.org/10.1007/s00580-023-03446-5

Article  CAS  Google Scholar 

Shah MZ, Shrivastava VK, Mir MA, Olaniyi KS (2023) Role of diacerein on steroidogenesis and folliculogenesis related genes in ovary of letrozole-induced PCOS mice. Chemico-Biolog Interact 377:110468. https://doi.org/10.1016/j.cbi.2023.110468

Article  CAS  Google Scholar 

Sudhakaran G, Priya PS, Jagan K et al (2023) Osteoporosis in polycystic ovary syndrome (PCOS) and involved mechanisms. Life Sci 335:122280. https://doi.org/10.1016/j.lfs.2023.122280

Article  CAS  PubMed  Google Scholar 

Witchel SF, Oberfield SE, Peña AS (2019) Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endocr Soc 3(8):1545–1573. https://doi.org/10.1210/js.2019-00078

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif