Abramovich D, Irusta G, Bas D et al (2012) Angiopoietins/TIE2 System and VEGF are involved in ovarian function in a DHEA rat model of polycystic ovary syndrome. Endocrinology 153:3446–3456. https://doi.org/10.1210/EN.2012-1105
Article CAS PubMed Google Scholar
Atef MM, Abd-Ellatif RN, Emam MN et al (2019) Therapeutic potential of sodium selenite in letrozole induced polycystic ovary syndrome rat model: targeting mitochondrial approach (selenium in PCOS). Arch Biochem Biophys 671:245–254. https://doi.org/10.1016/J.ABB.2019.06.009
Article CAS PubMed Google Scholar
Baravalle C, Salvetti NR, Mira GA et al (2006) Microscopic characterization of follicular structures in letrozole-induced polycystic ovarian syndrome in the rat. Arch Med Res 37(7):830–839. https://doi.org/10.1016/j.arcmed.2006.04.006
Article CAS PubMed Google Scholar
Cai Y, Jun G, Zhuang X (2024) Metformin treatment reduces the incidence of osteoporosis: a two-sample Mendelian randomized study. Osteoporos Int 35(6):1089–1098. https://doi.org/10.1007/s00198-023-07013-0
Article CAS PubMed PubMed Central Google Scholar
Caldwell ASL, Middleton LJ, Jimenez M et al (2014) Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 155(8):3146–59. https://doi.org/10.1210/en.2014-1196
Article CAS PubMed Google Scholar
Cheng CH, Chen LR, Chen KH (2022) Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci 23(3):1376. https://doi.org/10.3390/ijms23031376
Article CAS PubMed PubMed Central Google Scholar
Danduga RCSR, Kurapati AS, Shaik RA et al (2024) Synergistic amelioration of letrozole-induced polycystic ovary syndrome in rats: a therapeutic approach with apple cider vinegar and metformin combination. Reprod Sci 31:2861–2876. https://doi.org/10.1007/S43032-024-01545-4/METRICS
Article CAS PubMed Google Scholar
Dang CX, Wang D, Yu X et al (2022) Exploring the relationship between osteoporosis and polycystic ovary syndrome based on bioinformatics. Med (United States) 101(25):e29434. https://doi.org/10.1097/MD.0000000000029434
Ding H, Zhang J, Zhang F et al (2021) Resistance to the insulin and elevated level of androgen: a major cause of polycystic ovary syndrome. Front Endocrinol (Lausanne) 12:1–14. https://doi.org/10.3389/fendo.2021.741764
Eckmann KR, Kockler DR (2009) Aromatase inhibitors for ovulation and pregnancy in polycystic ovary syndrome. Ann Pharmacother 43(7–8):1338–1346. https://doi.org/10.1345/aph.1M096
Article CAS PubMed Google Scholar
Fauser BCJM, Tarlatzis F et al (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47. https://doi.org/10.1093/HUMREP/DEH098
Kafali H, Iriadam M, Ozardali I, Demir N (2004) Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 35:103–108. https://doi.org/10.1016/J.ARCMED.2003.10.005
Article CAS PubMed Google Scholar
Khaled N, El-Bahy ASA, Radwan R et al (2019) Ocimum kilimandscharicum L. restores ovarian functions in letrozole - induced Polycystic Ovary Syndrome (PCOS) in rats: comparison with metformin. Life Sci 232:116640. https://doi.org/10.1016/J.LFS.2019.116640
Kim EJ, Jang M, Choi JH et al (2018) An improved dehydroepiandrosterone-induced rat model of polycystic ovary syndrome (Pcos): post-pubertal improve pcos’s features. Front Endocrinol (Lausanne) 9:1–7. https://doi.org/10.3389/FENDO.2018.00735/BIBTEX
Krishnan A, Muthusami S (2017) Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol 232(2):R99–R113. https://doi.org/10.1530/JOE-16-0405
Article CAS PubMed Google Scholar
Krishnan A, Muthusami S, Periyasamy L et al (2020) Effect of DHT-induced hyperandrogenism on the pro-inflammatory cytokines in a rat model of polycystic ovary morphology. Medicina 56:100. https://doi.org/10.3390/medicina56030100
Article PubMed PubMed Central Google Scholar
Lentscher JA, Decherney AH (2021) Clinical presentation and diagnosis of polycystic ovarian syndrome. Clin Obstet Gynecol 64:3–11. https://doi.org/10.1097/GRF.0000000000000563
Article PubMed PubMed Central Google Scholar
Lujan ME, Chizen DR, Pierson RA (2008) Diagnostic criteria for polycystic ovary syndrome: pitfalls and controversies. J Obstet Gynaecol Canada 30(8):671–679. https://doi.org/10.1016/S1701-2163(16)32915-2
Mancini A, Bruno C, Vergani E et al (2021) Oxidative stress and low-grade inflammation in polycystic ovary syndrome: controversies and new insights. Int J Mol Sci 22(4):1667. https://doi.org/10.3390/ijms22041667
Article CAS PubMed PubMed Central Google Scholar
Mannerås L, Cajander S, Holmäng A et al (2007) A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology 148(8):3781–3791. https://doi.org/10.1210/en.2007-0168
Article CAS PubMed Google Scholar
Marcondes FK, Bianchi FJ, Tanno AP (2002) Determination of the estrous cycle phases of rats: some helpful considerations. Brazilian J Biol 62(4A):609–14. https://doi.org/10.1590/S1519-69842002000400008
Mills EG, Abbara A, Dhillo WS, Comninos AN (2023) Effects of distinct Polycystic Ovary Syndrome phenotypes on bone health. Front Endocrinol (Lausanne) 14:1163771. https://doi.org/10.3389/FENDO.2023.1163771/BIBTEX
Noroozzadeh M, Amiri M, Farhadi-Azar M, Ramezani Tehrani F (2022) Bone health in women with polycystic ovary syndrome: a narrative review. J Clin Densitom 25(4):606–614. https://doi.org/10.1016/j.jocd.2022.02.005
Osuka S, Nakanishi N, Murase T et al (2019) Animal models of polycystic ovary syndrome: a review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuropeptides. Reprod Med Biol 18:151–160. https://doi.org/10.1002/rmb2.12262
Parini P, Angelin B, Stavréus-Evers A et al (2000) Biphasic effects of the natural estrogen 17β-estradiol on hepatic cholesterol metabolism in intact female rats. Arterioscler Thromb Vasc Biol 20:1817–1823. https://doi.org/10.1161/01.ATV.20.7.1817/ASSET/423F53B4-770E-4B10-8AED-3EA96446BBE6/ASSETS/GRAPHIC/HQ0701375005.JPEG
Article CAS PubMed Google Scholar
Sanchez-Garrido MA, Tena-Sempere M (2020) Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab 35:00937. https://doi.org/10.1016/j.molmet.2020.01.001
Shah MZ, Shrivastava VK (2023) Ameliorative effects of quercetin on endocrine and metabolic abnormalities associated with experimentally induced polycystic ovary syndrome in mice. Comparative Clin Patho 32:383–391. https://doi.org/10.1007/s00580-023-03446-5
Shah MZ, Shrivastava VK, Mir MA, Olaniyi KS (2023) Role of diacerein on steroidogenesis and folliculogenesis related genes in ovary of letrozole-induced PCOS mice. Chemico-Biolog Interact 377:110468. https://doi.org/10.1016/j.cbi.2023.110468
Sudhakaran G, Priya PS, Jagan K et al (2023) Osteoporosis in polycystic ovary syndrome (PCOS) and involved mechanisms. Life Sci 335:122280. https://doi.org/10.1016/j.lfs.2023.122280
Article CAS PubMed Google Scholar
Witchel SF, Oberfield SE, Peña AS (2019) Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endocr Soc 3(8):1545–1573. https://doi.org/10.1210/js.2019-00078
Comments (0)