Abouzeid H, Boisset G, Favez T, Youssef M, Marzouk I, Shakankiry N et al (2011) Mutations in the SPARC-related modular calcium-binding protein 1 gene, SMOC1, cause waardenburg anophthalmia syndrome. Am J Hum Genet 88:92–98. https://doi.org/10.1016/j.ajhg.2010.12.002
Article CAS PubMed PubMed Central Google Scholar
Adams KL, Gallo V (2018) The diversity and disparity of the glial scar. Nat Neurosci 21:9–15
Article CAS PubMed Google Scholar
Afroz KF, Levites Y, Ryu D, Ran Y, Gadhavi JD, Liu X et al (2024) SPARC-related modular calcium-binding proteins (SMOC1 and 2) as a modulator of amyloid pathology in Alzheimer’s disease. Alzheimer’s association international conference
Ao X, Jiang M, Zhou J, Liang H, Xia H, Chen G (2019) lincRNA-p21 inhibits the progression of non-small cell lung cancer via targeting miR-17-5p. Oncol Rep 41:789–800. https://doi.org/10.3892/or.2018.6900
Article CAS PubMed Google Scholar
Aoki H, Takasawa A, Yamamoto E, Niinuma T, Yamano H-o, Harada T et al (2024) Downregulation of SMOC1 is associated with progression of colorectal traditional serrated adenomas. BMC Gastroenterol 24:91. https://doi.org/10.1186/s12876-024-03175-1
Article CAS PubMed PubMed Central Google Scholar
Aoki H, Yamamoto E, Takasawa A, Niinuma T, Yamano HO, Harada T et al (2018) Epigenetic silencing of SMOC1 in traditional serrated adenoma and colorectal cancer. Oncotarget 9:4707–4721. https://doi.org/10.18632/oncotarget.23523
Arai H, Emson P, Mountjoy C, Carassco L, Heizmann C (1987) Loss of parvalbumin-immunoreactive neurones from cortex in Alzheimer-type dementia. Brain Res 418:164–169
Article CAS PubMed Google Scholar
Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E (2023) Compilation of reported protein changes in the brain in Alzheimer’s disease. Nat Commun 14:4466. https://doi.org/10.1038/s41467-023-40208-x
Article CAS PubMed PubMed Central Google Scholar
Bai B, Wang X, Li Y, Chen PC, Yu K, Dey KK et al (2020) Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105:975-991.e7. https://doi.org/10.1016/j.neuron.2019.12.015
Article CAS PubMed PubMed Central Google Scholar
Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE et al (2021) Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598:111–119. https://doi.org/10.1038/s41586-021-03465-8
Article CAS PubMed PubMed Central Google Scholar
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE et al (2023) Role of calcium modulation in the pathophysiology and treatment of Alzheimer’s disease. Int J Mol Sci 24:9067
Article PubMed PubMed Central Google Scholar
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA (2018) Religious orders study and rush memory and aging project. J Alzheimers Dis 64:S161–S189
Article PubMed PubMed Central Google Scholar
Bezprozvanny IB (2010) Calcium signaling and neurodegeneration. Acta Naturae 2:72–82
Article CAS PubMed PubMed Central Google Scholar
Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463. https://doi.org/10.1016/j.tins.2008.06.005
Article CAS PubMed PubMed Central Google Scholar
Boyle PA, Yu L, Nag S, Leurgans S, Wilson RS, Bennett DA et al (2015) Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 85:1930–1936
Article CAS PubMed PubMed Central Google Scholar
Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278. https://doi.org/10.1016/0197-4580(95)00021-6
Article CAS PubMed Google Scholar
Brady DR, Mufson EJ (1997) Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer’s diseased brain. Neuroscience 80:1113–1125. https://doi.org/10.1016/S0306-4522(97)00068-7
Article CAS PubMed Google Scholar
Brellier F, Ruggiero S, Zwolanek D, Martina E, Hess D, Brown-Luedi M et al (2011) SMOC1 is a tenascin-C interacting protein over-expressed in brain tumors. Matrix Biol 30:225–233. https://doi.org/10.1016/j.matbio.2011.02.001
Article CAS PubMed Google Scholar
Bryois J, Calini D, Macnair W, Foo L, Urich E, Ortmann W et al (2022) Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat Neurosci 25:1104–1112. https://doi.org/10.1038/s41593-022-01128-z
Article CAS PubMed Google Scholar
Bu J, Sathyendra V, Nagykery N, Geula C (2003) Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp Neurol 182:220–231. https://doi.org/10.1016/S0014-4886(03)00094-3
Article CAS PubMed Google Scholar
Carlyle BC, Kandigian SE, Kreuzer J, Das S, Trombetta BA, Kuo Y et al (2021) Synaptic proteins associated with cognitive performance and neuropathology in older humans revealed by multiplexed fractionated proteomics. Neurobiol Aging 105:99–114. https://doi.org/10.1016/j.neurobiolaging.2021.04.012
Article CAS PubMed PubMed Central Google Scholar
Chamling X, Kallman A, Fang W, Berlinicke CA, Mertz JL, Devkota P et al (2021) Single-cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell-derived oligodendrocyte lineage cells. Nat Commun 12:652. https://doi.org/10.1038/s41467-021-20892-3
Article CAS PubMed PubMed Central Google Scholar
Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S et al (2019) Cellular calcium signaling in the aging brain. J Chem Neuroanat 95:95–114. https://doi.org/10.1016/j.jchemneu.2017.11.008
Article CAS PubMed Google Scholar
Choi Y-A, Lim J, Kim KM, Acharya B, Cho J-Y, Bae Y-C et al (2010) Secretome analysis of human BMSCs and identification of SMOC1 as an important ECM protein in osteoblast differentiation. J Proteome Res 9:2946–2956. https://doi.org/10.1021/pr901110q
Article CAS PubMed Google Scholar
Cox D, Selig E, Griffin MD, Carver JA, Ecroyd H (2016) Small heat-shock proteins prevent alpha-synuclein aggregation via transient interactions and their efficacy is affected by the rate of aggregation. J Biol Chem 291:22618–22629. https://doi.org/10.1074/jbc.M116.739250
Article CAS PubMed PubMed Central Google Scholar
Cristóvão JS, Morris VK, Cardoso I, Leal SS, Martínez J, Botelho HM et al (2018) The neuronal S100B protein is a calcium-tuned suppressor of amyloid-β aggregation. Sci Adv 4:eaaq1702. https://doi.org/10.1126/sciadv.aaq1702
Article CAS PubMed PubMed Central Google Scholar
Cruchaga C, Ali M, Shen Y, Do A, Wang L, Western D et al (2024) Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures for asymptomatic and symptomatic Alzheimer’s disease. Res Sq. https://doi.org/10.21203/rs.3.rs-3631708/v1
Comments (0)