Antoszczak M, Steverding D, Huczynski A. Anti-parasitic activity of polyether ionophores. Eur J Med Chem. 2019;166:32–47.
Article CAS PubMed Google Scholar
Alemu G, Abossie A, Yohannes Z. Current status of intestinal parasitic infections and associated factors among primary school children in Birbir town. South Ethiop BMC Infect Dis. 2019;19:1–8.
Ngari NN, Gamba DO, Olet PA, Zhao W, Paone M, Cecchi G. Developing a national atlas to support the progressive control of tsetse-transmitted animal trypanosomosis in Kenya. Parasit Vectors. 2020;13:1–12.
Odeniran PO, Onifade AA, MacLeod ET, Ademola IO, Alderton S, Welburn SC. Mathematical modelling and control of African animal trypanosomosis with interacting populations in West Africa-Could biting flies be important in main taining the disease endemicity? PLoS ONE. 2020;15(11):e0242435.
Article CAS PubMed PubMed Central Google Scholar
Zajíčková M, Nguyen LT, Skálová L, Stuchlíková LR, Matoušková P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today. 2020;25(2):430–7.
Rana AK, Misra-Bhattacharya S. Current drug targets for helminthic diseases. Parasitol Res. 2013;112:1819–31.
You H, Liu C, Du X, McManus DP. Acetylcholinesterase and nicotinic acetylcholine receptors in schistosomes and other parasitic helminths. Molecules. 2017;22(9):1550.
Article PubMed PubMed Central Google Scholar
Valli M, Danuello A, Pivatto M, Saldana JC, Heinzen H, Domínguez L, Campos PV, Marqui SR, Young CMM, Viegas C Jr, Silva DHS, Bolzani VS. Anticholinesterasic, nematostatic and anthelmintic activities of pyridinic and pyrazinic compounds. Curr Med Chem. 2011;18(22):3423–30.
Article CAS PubMed Google Scholar
Kayamba F, Faya M, Pooe OJ, Kushwaha B, Kushwaha ND, Obakachi VA, Nyamori VO, Karpoormath R. Lactate dehydrogenase and malate dehydrogenase: potential antiparasitic targets for drug development studies. Bioorg Med Chem. 2021;50:116458.
Article CAS PubMed Google Scholar
Braga TM, Rocha L, Chung TY, Oliveira RF, Pinho C, Oliveira AI, Morgado J, Cruz A. Azadirachta indica A. Juss. in vivo toxicity—an updated review. Molecules. 2021;26(2):252.
Article CAS PubMed PubMed Central Google Scholar
Adepoju TF. Optimization processes of biodiesel production from pig and neem (Azadirachta indica a. Juss) seeds blend oil using alternative catalysts from waste biomass. Ind Crops Prod. 2020;149:112334.
Habluetzel A, Pinto B, Tapanelli S, Nkouangang J, Saviozzi M, Chianese G, Lopatriello A, Tenoh AR, Yerbanga RS, Taglialatela-Scafati O, Fulvio E, Fabrizio B. Effects of Azadirachta indica seed kernel extracts on early erythrocytic schizogony of Plasmodium berghei and pro-inflammatory response in inbred mice. Malar J. 2019;18:1–9.
Mbaya AW, Ibrahim UI, God OT, Ladi S. Toxicity and potential anti-trypanosomal activity of ethanolic extract of Azadirachta indica (Maliacea) stem bark: an in vivo and in vitro approach using Trypanosoma brucei. J Ethnopharmacol. 2010;128(2):495–500.
Onyiche TE, Gotep JG, Tanko JT, Ochigbo GO, Ozoani HA, Viyoff VZ, Dogonyaro BB, Makoshi MS, Kinjir H, Thekisoe O. Azadirachta indica aqueous leaf extracts ameliorates coccidiosis in broiler chickens experimentally infected with Eimeria oocysts. Sci Afr. 2021;13:e00851.
Costa C, Bevilaqua C, Maciel M, Camurça-Vasconcelos A, Morais S, Monteiro M, Farias V, Da Silva M, Souza M. Anthelmintic activity of Azadirachta indica A. Juss against sheep gastrointestinal nematodes. Vet Parasitol. 2006;137(3–4):306–10.
Article CAS PubMed Google Scholar
Jamnah O, Khadijah S, Vincent N. Daily feeding of fresh neem leaves (Azadirachta indica) for worm control in sheep. J Trop Biomed. 2006;23(1):23–30.
Xiang X, Wu L, Mao L, Liu Y. Anti-oxidative and anti-apoptotic neuroprotective effects of Azadirachta indica in Parkinson-induced functional damage. Mol Med Rep. 2018;17(6):7959–65.
Chianese G, Yerbanga SR, Lucantoni L, Habluetzel A, Basilico N, Taramelli D, Fattorusso E, Taglialatela-Scafati O. Antiplasmodial triterpenoids from the fruits of neem, Azadirachta indica. J Nat Prod. 2010;73(8):1448–52.
Article CAS PubMed Google Scholar
Lu J, Song HP, Li P, Zhou P, Dong X, Chen J. Screening of direct thrombin inhibitors from Radix Salviae Miltiorrhizae by a peak fractionation approach. J Pharm Biomed Anal. 2015;109:85–90.
Article CAS PubMed Google Scholar
Fan MX, Chen GL, Sun BQ, Wu JL, Li N, Sarker SD, Nahar L, Guo MQ. Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS. Phytochem Rev. 2020;19:1231–61.
Li L, Kong J, Yao CH, Liu XF, Liu JH. Rapid identification of urokinase plasminogen activator inhibitors from Traditional Chinese Medicines based on ultrafiltration, LC–MS and in silico docking. J Pharm Biomed Anal. 2019;164:241–8.
Article CAS PubMed Google Scholar
Zhang H, Chen GL, Zhang YL, Yang M, Chen JM, Guo MQ. Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets. Food Chem. 2022;375:131856.
Article CAS PubMed Google Scholar
Fan MX, Chen GL, Guo MQ. Potential antioxidative components in Azadirachta indica revealed by bio-Affinity ultrafiltration with SOD and XOD. Antioxidants. 2022;11(4):658–73.
Article CAS PubMed PubMed Central Google Scholar
Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci. 2008;105(13):5022–7.
Article CAS PubMed PubMed Central Google Scholar
Quintana JF, Bueren-Calabuig J, Zuccotto F, de Koning HP, Horn D, Field MC. Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Neglected Trop Dis. 2020;14(7):e0008458.
Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95.
Article CAS PubMed Google Scholar
Chen GL, Fan MX, Wu JL, Li N, Guo MQ. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019;277:706–12.
Article CAS PubMed Google Scholar
Cesa S, Sisto F, Zengin G, Scaccabarozzi D, Kokolakis AK, Scaltrito MM, Grande R, Locatelli M, Cacciagrano F, Angiolella L, Campestre C, Granese A, Chimenti P, Basilico N. Phytochemical analyses and pharmacological screening of neem oil. S Afr J Bot. 2019;120:331–7.
Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D, Padmaja R, Radhika S, Amit A, Venkateshwarlu K, Deepak M. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol. 2007;109(2):359–63.
Article CAS PubMed Google Scholar
Jiao J, Yang Y, Wu Z, Li B, Zheng Q, Wei S, Wang Y, Yang M. Screening cyclooxygenase-2 inhibitors from Andrographis paniculata to treat inflammation based on bio-affinity ultrafiltration coupled with UPLC-Q-TOF-MS. Fitoterapia. 2019;137:104259.
Article CAS PubMed Google Scholar
Ou CY, Geng T, Wang JJ, Gao X, Chen XL, Luo XT, Tong XY, Cao L, Wang ZZ, Xiao W. Systematically investigating the pharmacological mechanism of Dazhu Hongjingtian in the prevention and treatment of acute mountain sickness by integrating UPLC/Q-TOF-MS/MS analysis and network pharmacology. J Pharm Biomed Anal. 2020;179:113028.
Article CAS PubMed Google Scholar
Jiménez-Sánchez C, Lozano-Sánchez J, Gabaldón-Hernández JA, Segura-Carretero A, Fernández-Gutiérrez A. RP-HPLC-ESI-QTOF/MS2 based strategy for the comprehensive metabolite profiling of Sclerocarya Birrea (Marula) bark. Ind Crops Prod. 2015;71:214–34.
Comments (0)