Biopolymer Decorated Pencil Graphite Electrode for the In-situ Quantification of L-Tryptophan in Dietary Supplements

Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: an overview. Coord Chem Rev. 2022;468:214627.

Article  CAS  Google Scholar 

Pradhan R, Panigrahi S, Sahu PK. Conformational search for the building block of proteins based on the gradient gravitational search algorithm (ConfGGS) using force fields: CHARMM, AMBER, and OPLS-AA. J Chem Inf Model. 2023;63(2):670–90.

Article  CAS  PubMed  Google Scholar 

Xiao F, Guo F. Impacts of essential amino acids on energy balance. Mol Metab. 2022;57:101393.

Article  CAS  PubMed  Google Scholar 

Rajeev N, Al S, Chandran A, Sadanandan S. Recent advances in peptides-based stimuli-responsive materials for biomedical and therapeutic applications: a review. Mole Pharm. 2022;19(7):1999–2021.

Article  Google Scholar 

Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal. 2023;230:115390.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Waterhouse GIN, Xiang Z, Che J, Chen C, Sun W. A highly sensitive electrochemical sensor containing nitrogen-doped ordered mesoporous carbon (NOMC) for voltammetric determination of l-tryptophan. Food Chem. 2020;326:126976.

Article  CAS  PubMed  Google Scholar 

Comai S, Bertazzo A, Brughera M, Crotti S. Tryptophan in health and disease. Adv Clin Chem. 2020;95:165–218.

Article  CAS  PubMed  Google Scholar 

Rejithamol R, Krishnan RG, Beena S. Electrochemical quantification of L-tryptophan via molecular imprinted pyromellitic acid polymer-based indium tin oxide electrode. J Electrochem Soc. 2020;167:117507.

Article  CAS  Google Scholar 

Zhang J-W, Zhang X. Electrode material fabricated by loading cerium oxide nanoparticles on reduced graphene oxide and its application in electrochemical sensor for tryptophan. J Alloys Compd. 2020;842:155934.

Article  CAS  Google Scholar 

Holeček M. Side effects of amino acid supplements. Physiol Res. 2022;71:29.

Article  PubMed  PubMed Central  Google Scholar 

Karakawa S, Nakayama A, Ohtsuka N, Sato K, Smriga M. Detection of impurities in dietary supplements containing L-tryptophan. Amino Acids. 2022;54:835–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezaei F, Ashraf N, Zohuri GH. A smart electrochemical sensor based upon hydrophilic core–shell molecularly imprinted polymer for determination of L-tryptophan. Microchem J. 2023;185:108260.

Article  CAS  Google Scholar 

Zhao D, Lu Y, Ding Y, Fu R. An amperometric L-tryptophan sensor platform based on electrospun tricobalt tetroxide nanoparticles decorated carbon nanofibers. Sensors Actuators, B Chem. 2017;241:601–6.

Article  CAS  Google Scholar 

Khan ZA, Hong PJ-S, Lee CH, Hong Y. Recent advances in electrochemical and optical sensors for detecting tryptophan and melatonin. Int J Nanomed. 2021;16:6861.

Article  CAS  Google Scholar 

Rejithamol R, Chandran D, Sreelekshmi PJ, Devika V, Agraja P, Maheswari K, Balaraman V. Biopolymer supported electroanalytical methods for the determination of biomolecules and food additives-A comprehensive perspective. Anal Method. 2023;15(24):2886.

Article  Google Scholar 

Sfragano PS, Moro G, Polo F, Palchetti I. The role of peptides in the design of electrochemical biosensors for clinical diagnostics. Biosensors. 2021;11:246.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao S, Liu N, Wang W, Xu Z, Wu Y, Luo X. An electrochemical biosensor for alpha-fetoprotein detection in human serum based on peptides containing isomer D-Amino acids with enhanced stability and antifouling property. Biosens Bioelectron. 2021;190:113466.

Article  CAS  PubMed  Google Scholar 

Beyer CD, Reback ML, Heinen N, Thavalingam S, Rosenhahn A, Metzler-Nolte N. Low fouling peptides with an all (D) amino acid sequence provide enhanced stability against proteolytic degradation while maintaining low antifouling properties. Langmuir. 2020;36:10996–1004.

Article  CAS  PubMed  Google Scholar 

Rejithamol R, Beena S. Phenyl hydrazine and 2,4-dinitrophenyl hydrazine-based polymeric materials for the electrochemical quantification of thrombotonin. MRS Adv. 2021;6:750–7.

Article  CAS  Google Scholar 

Keller O, Keller W, Look G, Wersin G. tert-Butoxycarbonylation of amino acids and their derivatives: N-tert-butoxycarbonyl-l-phenylalanine. Org Synth. 1985;63:160.

Article  CAS  Google Scholar 

Li J, Sha Y. A convenient synthesis of amino acid methyl esters. Molecules. 2008;13:1111–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Navrátil R, Kotzianová A, Halouzka V, Opletal T, Triskova I, Trnkova L, Hrbac J. Polymer lead pencil graphite as electrode material: voltammetric, XPS and Raman study. J Electroanal Chem. 2016;783:152–60.

Article  Google Scholar 

Nazarpour S, Hajian R, Sabzvari MH. A novel nanocomposite electrochemical sensor based on green synthesis of reduced graphene oxide/gold nanoparticles modified screen printed electrode for determination of tryptophan using response surface methodology approach. Microchem J. 2020;154:104634.

Article  CAS  Google Scholar 

Zhang L, Sun M, Jing T, Li S, Ma H. A facile electrochemical sensor based on green synthesis of Cs/Ce-MOF for detection of tryptophan in human serum. Colloids Surfaces A Physicochem Eng Asp. 2022;648:129225.

Article  CAS  Google Scholar 

Saeb E, Asadpour-Zeynali K. A novel ZIF-8@ ZIF-67/Au core–shell metal organic framework nanocomposite as a highly sensitive electrochemical sensor for nitrite determination. Electrochim Acta. 2022;417:140278.

Article  CAS  Google Scholar 

Rejithamol R, Krishnan RG, Beena S. Disposable pencil graphite electrode decorated with a thin film of electro-polymerized 2, 3, 4, 6, 7, 8, 9, 10-octahydropyrimido [1, 2-a] azepine for simultaneous voltammetric analysis of dopamine, serotonin and tryptophan. Mater Chem Phys. 2021;258:123857.

Article  CAS  Google Scholar 

Güneş M, Şap A, Karakaya S, Yaman M, Dilgin Y. Sensitive amperometric detection of hydroxylamine at electropolymerized curcumin film coated pencil graphite electrode. ChemistrySelect. 2023;8:e202204104.

Article  Google Scholar 

Chen Y, He T, Liao D, Li Q, Song Y, Xue H, Zhang Y. Carbon aerogels with nickel@ N-doped carbon core-shell nanoclusters as electrochemical sensors for simultaneous determination of hydroquinone and catechol. Electrochim Acta. 2022;414:140199.

Article  CAS  Google Scholar 

Zhang S, Ling P, Chen Y, Liu J, Yang C. 2D/2D porous Co3O4/rGO nanosheets act as an electrochemical sensor for voltammetric tryptophan detection. Diam Relat Mater. 2023;135:109811.

Article  CAS  Google Scholar 

Yang LF, Lin Y, Ma Y, Ye JS. In vivo detection of L-tryptophan in cucumbers using poly (9-Aminoacridine) film modified pencil graphite electrode. Chinese J Anal Chem. 2022;50:100169.

Article  Google Scholar 

Antherjanam S, Saraswathyamma B, Kumar SMS. Simultaneous electrochemical determination of the tumour biomarkers homovanillic acid and vanillylmandelic acid using a modified pencil graphite electrode. Microchem J. 2023;190:108659.

Article  CAS  Google Scholar 

Abdel-aal FAM, Kamel RM, Abdeltawab AA, Mohamed FA, Mohamed AMI. Polypyrrole/carbon dot nanocomposite as an electrochemical biosensor for liquid biopsy analysis of tryptophan in the human serum of normal and breast cancer women. Anal Bioanal Chem. 2023;415:4985–5001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antherjanam S, Saraswathyamma B. Simultaneous electrochemical determination of hydrazine and hydroxylamine on a thiadiazole derivative modified pencil graphite electrode. Mater Chem Phys. 2022;275:125223.

Article  CAS  Google Scholar 

Garg S, Singh A, Parmar AS. Boron carbon nitride-assisted electro-functionalization of screen- printed electrode for tryptophan Sensing. ACS Appl Nano Mater. 2023. https://doi.org/10.1021/acsanm.3c02396.

Article 

Comments (0)

No login
gif