Zhang Y, Lei Y, Lu H, Shi L, Wang P, Ali Z, Li J. Electrochemical detection of bisphenols in food: a review. Food Chem. 2021;346:128895.
Article CAS PubMed Google Scholar
Gallo P, Di Marco PI, Esposito F, Fasano E, Scognamiglio G, Mita GD, Cirillo T. Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection. Food Chem. 2017;220:406–12.
Article CAS PubMed Google Scholar
Loffredo LF, Coden ME, Berdnikovs S. Endocrine disruptor bisphenol A (BPA) triggers systemic para-inflammation and is sufficient to induce airway allergic sensitization in mice. Nutrients. 2020;12:343.
Article CAS PubMed PubMed Central Google Scholar
Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, Neretin L, Wong MH. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int. 2012;42:91–9.
Article CAS PubMed Google Scholar
Dhanjai SA, Wu L, Lu X, Chen J, Jain R. Advances in sensing and biosensing of bisphenols: a review. Anal Chim Acta. 2018;998:1–27.
Article CAS PubMed Google Scholar
Mercogliano R, Santonicola S. Investigation on bisphenol A levels in human milk and dairy supply chain: a review. Food Chem Toxicol. 2018;114:98–107.
Article CAS PubMed Google Scholar
Santovito A, Cannarsa E, Schleicherova D, Cervella P. Clastogenic effects of bisphenol A on human cultured lymphocytes. Hum Exp Toxicol. 2017;37:69–77.
Wang DX, Wang XC, Hu QJ, Zhang CX, Li F, Wang FL, Feng QU. Salting-out assisted liquid-liquid extraction coupled to dispersive liquid-liquid microextraction for the determination of bisphenol A and six analogs (B, E, F, S, BADGE, BFDGE) in canned coffee drinks by ultra-performance liquid chromatography-tandem mass spectrometry. Food Anal Methods. 2021;14:441–52.
Sun Y, Huang J, Shan L, Fan S, Zhu Z, Liu X. Quantitative analysis of bisphenol analogue mixtures by terahertz spectroscopy using machine learning method. Food Chem. 2021;352:129313.
Article CAS PubMed Google Scholar
Zeng L, Cui H, Chao J, Huang K, Wang X, Zhou Y, Jing T. Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Microchim Acta. 2020;187:142.
Zhuang YF, Cao GP, Mao JY, Liu BL. Determination of bisphenol A by synchronous fluorimetry using procaine hydrochloride as self-quenching fluorescence probe. J Appl Spectrosc. 2019;85:1094–100.
Lu Y, Peterson JR, Gooding JJ, Lee NA. Development of sensitive direct and indirect enzyme-linked immunosorbent assays (ELISAs) for monitoring bisphenol-A in canned foods and beverages. Anal Bioanal Chem. 2012;403:1607–18.
Article CAS PubMed Google Scholar
Wang X, Shi Y, Shan J, Zhou H, Li M. Electrochemical sensor for determination of bisphenol A based on MOF-reduced graphene oxide composites coupled with cetyltrimethylammonium bromide signal amplification. Ionics. 2020;26:3135–46.
Wang KP, Hu JM, Zhang X. Sensitive electrochemical detection of endocrine disruptor bisphenol A (BPA) in milk based on iodine-doped graphene. Microchem J. 2022;173:107047.
Amiri M, Moghaddam HM. Green synthesis of ZnO/ZnCo2O4 and its application for electrochemical determination of bisphenol A. Microchem J. 2021;160:105663.
Li H, Zhu F, Xiang J, Wang F, Liu Q, Chen X. In situ growth of ZIF-8 on gold nanoparticles/magnetic carbon nanotubes for the electrochemical detection of bisphenol A. Anal Methods. 2021;13:2338–44.
Article CAS PubMed Google Scholar
Karthika P, Shanmuganathan S, Viswanathan S, Delerue-Matos C. Molecularly imprinted polymer-based electrochemical sensor for the determination of endocrine disruptor bisphenol-A in bovine milk. Food Chem. 2021;363:130287.
Article CAS PubMed Google Scholar
Lu K, Aung T, Guo N, Weichselbaum R, Lin W. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. 2018;30:1707634.
Dey B, Ahmad MW, Sarkhel G, Yang DJ, Choudhury A. Fabrication of porous nickel (II)-based MOF@ carbon nanofiber hybrid mat for high-performance non-enzymatic glucose sensing. Mater Sci Semicond Process. 2022;142:106500.
Ahmad MW, Dey B, Sarkhel G, Yang DJ, Choudhury A. Sea-urchin-like cobalt-MOF on electrospun carbon nanofiber mat as a self-supporting electrode for sensing of xanthine and uric acid. J Electroanal Chem. 2022;920:116646.
Dey B, Ahmad MW, Sarkhel G, Lee GH, Choudhury A. Fabrication of niobium metal organic frameworks anchored carbon nanofiber hybrid film for simultaneous detection of xanthine, hypoxanthine and uric acid. Microchem J. 2023;186:108295.
Xu X, Shi W, Li P, Ye S, Ye C, Ye H, Lu T, Zheng A, Zhu J, Xu L, Zhong M, Cao X. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem Mater. 2017;29:6058–65.
Xu C, Liu L, Wu C, Wu K. Unique 3D heterostructures assembled by quasi-2D Ni-MOF and CNTs for ultrasensitive electrochemical sensing of bisphenol A. Sens Actuators B: Chem. 2020;310:127885.
Wang F, Chen X, Chen L, Yang J, Wang Q. High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel (II)-based MOF/carbon nanotubes composite. Mater Sci Eng C. 2019;96:41–50.
Lin J, Hassan M, Bo X, Guo L. Synthesis of iron-based metal-organic framework@large mesoporous carbon composites and their electrocatalytic properties. J Electroanal Chem. 2017;801:373–80.
Dey B, Sarkhel G, Choudhury A. Facile synthesis of copper MOF/carbon nanofiber nanocomposite paper for electrochemical detection of toxic 4-nitrophenol. J Macromol Sci A. 2023;60:1–11.
Zhang J, Xu X, Chen L. An ultrasensitive electrochemical bisphenol A sensor based on hierarchical Ce-metal-organic framework modified with cetyltrimethylammonium bromide. Sens Actuators B: Chem. 2018;261:425–33.
Huang D, Huang X, Chen J, Ye R, Lin Q, Chen S. An electrochemical bisphenol: a sensor based on bimetallic Ce-Zn-MOF. Electrocatalysis. 2021;12:456–68.
Huang X, Huang D, Chen JY, Ye R, Lin Q, Chen S. Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A. Anal Bioanal Chem. 2020;412:849–60.
Article CAS PubMed Google Scholar
Schubert DM, Visi MZ, Knobler CB. Acid-catalyzed synthesis of zinc imidazolates and related bimetallic metal-organic framework compounds. Main Group Chem. 2018;7:311–22.
Xing H, Peng S, Zeyi T, Zhang F, Wang J, Geng H, Zou D, Di C, Yi Y, Sun Y, Xu W. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behavior. Nat Commun. 2015;6:7408.
Zhang X, Xu Y, Ye B. An efficient electrochemical glucose sensor based on porous nickel based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J Alloys Compd. 2018;767:651–6.
Wang X, Wang Q, Wang Q, Gao F, Gao F, Yang Y, Guo H. Highly dispersible and stable copper terephthalate metal–organic framework–graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Interfaces. 2014;6:11573–80.
Article CAS PubMed Google Scholar
Manh BN, Nhung VTH, Thu VT, Nga DTN, Thuan NPT, Giang HT, Yen PTH, Phong PH, Tuan AV, Ha VTT. An electrochemical sensor based on copper-based metal–organic framework-reduced graphene oxide composites for determination of 2,4-dichlorophenol in water. RSC Adv. 2020;10:42212–20.
Comments (0)