A Highly Sensitive Electrochemical Aptasensor for Kanamycin: Leveraging RecJf Exonuclease-Assisted Target Recycling and Hybridization Chain Reaction Signal Amplification

Sharma A, Istamboulie G, Hayat A, Catanante G, Bhand S, Marty JL. Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sens Actuators B Chem. 2017;245:507–15.

Article  CAS  Google Scholar 

Long F, Zhang ZH, Yang ZX, Zeng JH, Jiang YQ. Imprinted electrochemical sensor based on magnetic multi-walled carbon nanotube for sensitive determination of kanamycin. J Electroanal Chem. 2015;755:7–14.

Article  CAS  Google Scholar 

Zou L, Li XH, Lai YF. Colorimetric aptasensor for sensitive detection of kanamycin based on target-triggered catalytic hairpin assembly amplification and DNA-gold nanoparticle probes. Microchem J. 2021;162: 105858.

Article  CAS  Google Scholar 

Li JW, Liu YM, Lin H, Chen Y, Liu ZB, Zhuang XM, Tian CY, Fu XL, Chen LX. Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin. Food Chem. 2021;347: 128988.

Article  PubMed  CAS  Google Scholar 

Cheng ST, Liu HM, Zhang H, Chu GL, Guo YM, Sun X. Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sens Actuators B Chem. 2020;304: 127367.

Article  CAS  Google Scholar 

Dehghani S, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Nejabat M, Abnous K, Taghdisi SM. A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B. Anal Chim Acta. 2018;1030:142–7.

Article  PubMed  CAS  Google Scholar 

Qin L, Zeng GM, Lai C, Huang DL, Zhang C, Xu P, Hu TJ, Liu XG, Cheng M, Liu Y, Hu L, Zhou YY. A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sens Actuators B Chem. 2017;243:946–54.

Article  CAS  Google Scholar 

Wang CS, Liu C, Luo JB, Tian YP, Zhou ND. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal Chim Acta. 2016;936:75–82.

Article  PubMed  CAS  Google Scholar 

Tao XQ, Jiang HY, Zhu JH, Wang X, Wang ZH, Niu LL, Wu XP, Shi WM, Shen JZ. An ultrasensitive chemiluminescent ELISA for determination of chloramphenicol in milk, milk powder, honey, eggs and chicken muscle. Food Agric Immunol. 2014;25:137–48.

Article  CAS  Google Scholar 

El-Attug MN, Adams E, Hoogmartens J, Schepdael AV. Capacitively coupled contactless conductivity detection as an alternative detection mode in CE for the analysis of kanamycin sulphate and its related substances. J Sep Sci. 2011;34:2448–54.

Article  PubMed  CAS  Google Scholar 

Zhang XP, Wang JJ, Wu QH, Li L, Wang Y, Yang HL. Determination of kanamycin by high performance liquid chromatography. Molecules. 2019;24:1902.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gbylik-Sikorska M, Posyniak A, Sniegocki T, Zmudzki J. Liquid chromatography–tandem mass spectrometry multiclass method for the determination of antibiotics residues in water samples from water supply systems in food-producing animal farms. Chemosphere. 2015;119:8–15.

Article  PubMed  CAS  Google Scholar 

Xu F, Li JY, Zhou J, Liu ML, Liu YM, Wang JF, Ding SY, Li XB. A visual gel-enzyme-linked immunosorbent assay for simultaneous detection of gentamicin and kanamycin in milk. Chinese J Anal Chem. 2015;43:881–5.

CAS  Google Scholar 

Zhang LL, Zhu CC, Chen CB, Zhu SH, Zhou J, Wang ML, Shang PP. Determination of kanamycin using a molecularly imprinted SPR sensor. Food Chem. 2018;266:170–4.

Article  PubMed  CAS  Google Scholar 

Ha NR, Jung IP, Kim SH, Kim AR, Yoon MY. Paper chip-based colorimetric sensing assay for ultra-sensitive detection of residual kanamycin. Process Biochem. 2017;62:161–8.

Article  CAS  Google Scholar 

Chen J, Li ZH, Ge J, Yang R, Zhang L, Qu LB, Wang HQ, Zhang L. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Talanta. 2015;139:226–32.

Article  PubMed  CAS  Google Scholar 

Deng JK, Liu YQ, Lin XD, Lyu YL, Qian PC, Wang S. A ratiometric fluorescent biosensor based on cascaded amplification strategy for ultrasensitive detection of kanamycin. Sens Actuators B Chem. 2018;273:1495–500.

Article  CAS  Google Scholar 

Wang CK, Wang CQ, Wang QQ, Chen D. Resonance light scattering method for detecting kanamycin in milk with enhanced sensitivity. Anal Bioanal Chem. 2017;409:2839–46.

Article  PubMed  CAS  Google Scholar 

Wang H, Wu WW, Wei DY, Guo ZY, Wang S. Hollow fiber supported ionic liquid membrane microextraction for preconcentration of kanamycin sulfate with electrochemiluminescence detection. J Electroanal Chem. 2014;735:136–41.

Article  CAS  Google Scholar 

Khabbaz LS, Hassanzadeh-Khayyat M, Zaree P, Ramezani M, Abnous K, Taghdisi SM. Detection of kanamycin by using an aptamer-based biosensor using silica nanoparticles. Anal Methods. 2015;7:8611–6.

Article  CAS  Google Scholar 

Li FL, Wang XY, Sun X, Guo YM, Zhao WP. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Anal Chim Acta. 2018;1033:185–92.

Article  PubMed  CAS  Google Scholar 

Beiki T, Najafpour-Darzi G, Mohammadi M, Shakeri M. Design of a novel electrochemical aptasensor based on molybdenum disulfide nanosheets for lysozyme detection. J Anal Test. 2024;8:16–27.

Article  Google Scholar 

Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem. 2011;415:175–81.

Article  PubMed  CAS  Google Scholar 

Wang JL, Lu TT, Hu YL, Wang XL, Wu YG. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk. Spectrochim Acta A. 2020;226: 117651.

Article  CAS  Google Scholar 

Chen HY, Zhou SY, Ou RF, Lai TT, Gao SJ, Huang ZX, Zhou WR, Mai WY, Yang JP. Research progress of aptamer-functionalized DNA nano-biosensors. Chin J Anal Lab. 2023;42(9):1260–6.

Google Scholar 

Hong F, Chen XX, Cao YT, Dong YR, Wu DZ, Hu FT, Gan N. Enzyme-and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification. Biosens Bioelectron. 2018;112:202–8.

Article  PubMed  CAS  Google Scholar 

Park YM, Park J, Lim SY, Kwon Y, Bae NH, Park JK, Lee SJ. Integrated pumpless microfluidic chip for the detection of foodborne pathogens by polymerase chain reaction and electrochemical analysis. Sens Actuators B Chem. 2021;329: 129130.

Article  CAS  Google Scholar 

Liu ZJ, Yang LY, Wei QX, Ye CL, Xu XW, Zhong GX, Zheng YJ, Chen JY, Lin XH, Liu AL. A novel ligase chain reaction-based electrochemical biosensing strategy for highly sensitive point mutation detection from human whole blood. Talanta. 2020;216: 120966.

Article  PubMed  CAS  Google Scholar 

Wang YL, Liu S, Zhang DY, Xiao Q, Huang S. Ultrasensitive electrochemical platform for p53 gene via molecular beacon-mediated circular strand displacement and terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Analyst. 2023;148:1005–15.

Article  PubMed  CAS  Google Scholar 

Huang S, Li B, Mu PP, Zhang WQ, Liu Y, Xiao Q. Highly sensitive detection of microRNA-21 by nitrogen-doped carbon dots-based ratio fluorescent probe via nuclease-assisted rolling circle amplification strategy. Anal Chim Acta. 2023;1273: 341533.

Article  PubMed  CAS  Google Scholar 

Zhang Y, Wang WJ, Lin ZY, Liu B, Zhou X. Dual-output toehold-mediated strand displacement amplification for sensitive homogeneous electrochemical detection of specie-specific DNA sequences for species identification. Biosens Bioelectron. 2020;161: 112256.

Article  PubMed  CAS  Google Scholar 

Zhang D, Zhou GB, Yang HY, Wang Y, Shen LJ, Qiu YX, Li L, Guo LH. A bifunctional-blocker-aided hybridization chain reaction lighting-up self-calibrating nanocluster fluorescence for reliable nucleic acid detection. J Anal Test. 2024;8:160–9.

Article  Google Scholar 

Shao XL, Zhu LJ, Zhou X, Xu W. Research progress in the hybridization chain reaction based biosensor. J Agr Biotechnol. 2017;25:502–10.

Comments (0)

No login
gif