Sharma A, Istamboulie G, Hayat A, Catanante G, Bhand S, Marty JL. Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sens Actuators B Chem. 2017;245:507–15.
Long F, Zhang ZH, Yang ZX, Zeng JH, Jiang YQ. Imprinted electrochemical sensor based on magnetic multi-walled carbon nanotube for sensitive determination of kanamycin. J Electroanal Chem. 2015;755:7–14.
Zou L, Li XH, Lai YF. Colorimetric aptasensor for sensitive detection of kanamycin based on target-triggered catalytic hairpin assembly amplification and DNA-gold nanoparticle probes. Microchem J. 2021;162: 105858.
Li JW, Liu YM, Lin H, Chen Y, Liu ZB, Zhuang XM, Tian CY, Fu XL, Chen LX. Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin. Food Chem. 2021;347: 128988.
Article PubMed CAS Google Scholar
Cheng ST, Liu HM, Zhang H, Chu GL, Guo YM, Sun X. Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sens Actuators B Chem. 2020;304: 127367.
Dehghani S, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Nejabat M, Abnous K, Taghdisi SM. A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B. Anal Chim Acta. 2018;1030:142–7.
Article PubMed CAS Google Scholar
Qin L, Zeng GM, Lai C, Huang DL, Zhang C, Xu P, Hu TJ, Liu XG, Cheng M, Liu Y, Hu L, Zhou YY. A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sens Actuators B Chem. 2017;243:946–54.
Wang CS, Liu C, Luo JB, Tian YP, Zhou ND. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal Chim Acta. 2016;936:75–82.
Article PubMed CAS Google Scholar
Tao XQ, Jiang HY, Zhu JH, Wang X, Wang ZH, Niu LL, Wu XP, Shi WM, Shen JZ. An ultrasensitive chemiluminescent ELISA for determination of chloramphenicol in milk, milk powder, honey, eggs and chicken muscle. Food Agric Immunol. 2014;25:137–48.
El-Attug MN, Adams E, Hoogmartens J, Schepdael AV. Capacitively coupled contactless conductivity detection as an alternative detection mode in CE for the analysis of kanamycin sulphate and its related substances. J Sep Sci. 2011;34:2448–54.
Article PubMed CAS Google Scholar
Zhang XP, Wang JJ, Wu QH, Li L, Wang Y, Yang HL. Determination of kanamycin by high performance liquid chromatography. Molecules. 2019;24:1902.
Article PubMed PubMed Central CAS Google Scholar
Gbylik-Sikorska M, Posyniak A, Sniegocki T, Zmudzki J. Liquid chromatography–tandem mass spectrometry multiclass method for the determination of antibiotics residues in water samples from water supply systems in food-producing animal farms. Chemosphere. 2015;119:8–15.
Article PubMed CAS Google Scholar
Xu F, Li JY, Zhou J, Liu ML, Liu YM, Wang JF, Ding SY, Li XB. A visual gel-enzyme-linked immunosorbent assay for simultaneous detection of gentamicin and kanamycin in milk. Chinese J Anal Chem. 2015;43:881–5.
Zhang LL, Zhu CC, Chen CB, Zhu SH, Zhou J, Wang ML, Shang PP. Determination of kanamycin using a molecularly imprinted SPR sensor. Food Chem. 2018;266:170–4.
Article PubMed CAS Google Scholar
Ha NR, Jung IP, Kim SH, Kim AR, Yoon MY. Paper chip-based colorimetric sensing assay for ultra-sensitive detection of residual kanamycin. Process Biochem. 2017;62:161–8.
Chen J, Li ZH, Ge J, Yang R, Zhang L, Qu LB, Wang HQ, Zhang L. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Talanta. 2015;139:226–32.
Article PubMed CAS Google Scholar
Deng JK, Liu YQ, Lin XD, Lyu YL, Qian PC, Wang S. A ratiometric fluorescent biosensor based on cascaded amplification strategy for ultrasensitive detection of kanamycin. Sens Actuators B Chem. 2018;273:1495–500.
Wang CK, Wang CQ, Wang QQ, Chen D. Resonance light scattering method for detecting kanamycin in milk with enhanced sensitivity. Anal Bioanal Chem. 2017;409:2839–46.
Article PubMed CAS Google Scholar
Wang H, Wu WW, Wei DY, Guo ZY, Wang S. Hollow fiber supported ionic liquid membrane microextraction for preconcentration of kanamycin sulfate with electrochemiluminescence detection. J Electroanal Chem. 2014;735:136–41.
Khabbaz LS, Hassanzadeh-Khayyat M, Zaree P, Ramezani M, Abnous K, Taghdisi SM. Detection of kanamycin by using an aptamer-based biosensor using silica nanoparticles. Anal Methods. 2015;7:8611–6.
Li FL, Wang XY, Sun X, Guo YM, Zhao WP. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Anal Chim Acta. 2018;1033:185–92.
Article PubMed CAS Google Scholar
Beiki T, Najafpour-Darzi G, Mohammadi M, Shakeri M. Design of a novel electrochemical aptasensor based on molybdenum disulfide nanosheets for lysozyme detection. J Anal Test. 2024;8:16–27.
Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem. 2011;415:175–81.
Article PubMed CAS Google Scholar
Wang JL, Lu TT, Hu YL, Wang XL, Wu YG. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk. Spectrochim Acta A. 2020;226: 117651.
Chen HY, Zhou SY, Ou RF, Lai TT, Gao SJ, Huang ZX, Zhou WR, Mai WY, Yang JP. Research progress of aptamer-functionalized DNA nano-biosensors. Chin J Anal Lab. 2023;42(9):1260–6.
Hong F, Chen XX, Cao YT, Dong YR, Wu DZ, Hu FT, Gan N. Enzyme-and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification. Biosens Bioelectron. 2018;112:202–8.
Article PubMed CAS Google Scholar
Park YM, Park J, Lim SY, Kwon Y, Bae NH, Park JK, Lee SJ. Integrated pumpless microfluidic chip for the detection of foodborne pathogens by polymerase chain reaction and electrochemical analysis. Sens Actuators B Chem. 2021;329: 129130.
Liu ZJ, Yang LY, Wei QX, Ye CL, Xu XW, Zhong GX, Zheng YJ, Chen JY, Lin XH, Liu AL. A novel ligase chain reaction-based electrochemical biosensing strategy for highly sensitive point mutation detection from human whole blood. Talanta. 2020;216: 120966.
Article PubMed CAS Google Scholar
Wang YL, Liu S, Zhang DY, Xiao Q, Huang S. Ultrasensitive electrochemical platform for p53 gene via molecular beacon-mediated circular strand displacement and terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Analyst. 2023;148:1005–15.
Article PubMed CAS Google Scholar
Huang S, Li B, Mu PP, Zhang WQ, Liu Y, Xiao Q. Highly sensitive detection of microRNA-21 by nitrogen-doped carbon dots-based ratio fluorescent probe via nuclease-assisted rolling circle amplification strategy. Anal Chim Acta. 2023;1273: 341533.
Article PubMed CAS Google Scholar
Zhang Y, Wang WJ, Lin ZY, Liu B, Zhou X. Dual-output toehold-mediated strand displacement amplification for sensitive homogeneous electrochemical detection of specie-specific DNA sequences for species identification. Biosens Bioelectron. 2020;161: 112256.
Article PubMed CAS Google Scholar
Zhang D, Zhou GB, Yang HY, Wang Y, Shen LJ, Qiu YX, Li L, Guo LH. A bifunctional-blocker-aided hybridization chain reaction lighting-up self-calibrating nanocluster fluorescence for reliable nucleic acid detection. J Anal Test. 2024;8:160–9.
Shao XL, Zhu LJ, Zhou X, Xu W. Research progress in the hybridization chain reaction based biosensor. J Agr Biotechnol. 2017;25:502–10.
Comments (0)