Qin C, Liu A, An CX, Qiao SF, Zou JJ, Zhang M, Shi HQ. Determination of phenolic compounds in soil by accelerated solvent extraction-solid phase extraction-liquid chromatography/tandem mass spectrometry. Chin J Anal Lab. 2023;42(7):931–6.
Xie SM, Li M, Liao YX, Qin Q, Sun SX, Tan YH. In-situ preparation of biochar-loaded particle electrode and its application in the electrochemical degradation of 4-chlorophenol in wastewater. Chemosphere. 2021;273: 128506.
Chen SS, Huang RM, Liao D, Yu JG, Jiang XY. A sensitive sensor based on MOFs derived nanoporous carbons for electrochemical detection of 4-aminophenol. Ecotoxicol Environ Saf. 2020;191: 110194.
Article CAS PubMed Google Scholar
Karimi-Maleh H, Darabi R, Karimi F, Karaman C, Shahidi SA, Zare N, Baghayeri M, Fu L, Rostamnia S, Rouhi J. State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review. Environ Res. 2023;222: 115338.
Article CAS PubMed Google Scholar
Sun JF, Mu Q, Kimura H, Hou CX, He MX, Du W, Hou CX. Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater. 2022;5(2):627–40.
Nguyen MH, Nguyen TD, Duong HA, Pham HV. Dual optical detection approach for capillary electrophoresis following two-step liquid-liquid extraction to determine ten phenols in water samples. J Chromatogr A. 2024;1715: 464609.
Article CAS PubMed Google Scholar
López-Téllez JM, Cañizares-Macías MD. Evaluation of tomato (Lycopersicon esculentum P. Mill) by-product extracts obtained by different extraction methods as exploitation strategy of high-value polyphenols. Food Bioprocess Tech. 2024; https://doi.org/10.1007/s11947-023-03293-w
Wang CQ, Li ZZ, Xiang JL, Johnson JB, Zheng BL, Luo L, Beta T. From foxtail millet husk (waste) to bioactive phenolic extracts using deep eutectic solvent extraction and evaluation of antioxidant, acetylcholinesterase, and a-glucosidase inhibitory activities. Foods. 2023;12(6):1144.
Article CAS PubMed PubMed Central Google Scholar
Li M, Yu JT, Wang XM, Hao L, Ma LQ, Wang QQ, Liu WH, Wang Z, Wang C, Wu QH. N-rich hyper crosslinked porous polymers for highly efficient preconcentration and sensitive detection of chlorophenols. Microchim Acta. 2023;190(8):334.
Wu T, Zang XH, Wang MT, Chang QY, Wang C, Wu QH, Wang Z. Covalent organic framework as fiber coating for solid-phase microextraction of chlorophenols followed by quantification with gas chromatography-mass spectrometry. J Agric Food Chem. 2018;66(42):11158–65.
Article CAS PubMed Google Scholar
Liu L, Meng WK, Zhou YS, Wang X, Xu GJ, Wang ML, Lin JM, Zhao RS. β-Ketoenamine-linked covalent organic framework coating for ultra-high-performance solid-phase microextraction of polybrominated diphenyl ethers from environmental samples. Chem Eng J. 2019;356:926–33.
Ma LJ, Gao MM, Zhang LQ, Qiao Y, Li JX, Du LP, Zhang HL, Wang H. Characterization of the key aroma-active compounds in high-grade Dianhong tea using GC-MS and GC-O combined with sensory-directed flavor analysis. Food Chem. 2022;378: 132058.
Article CAS PubMed Google Scholar
Zhu WL, Qin PG, Han LZ, Zhang XW, Li D, Li MY, Wang YM, Zhang XB, Lu MH, Cai ZW. Gas-cycle-assisted headspace solid-phase microextraction coupled with gas chromatography for rapid analysis of organic pollutants. Chem Commun. 2021;57(70):8810–3.
Lan ZR, Huang J, Fu SL, Chen YW, Meng TY, Zhou WL, Xu Z, Chen ML, Wen L, Cheng YH, Ding L. Length-controlled hydrophobic CF3-COF as a highly efficient absorbent coating for dual-mode solid-phase microextraction of sixteen polycyclic aromatic hydrocarbons in water samples. Sci Total Environ. 2024;925: 171726.
Article CAS PubMed Google Scholar
Yan Q, Huang LJ, Guo WK, Ouyang L, Shuai Q. Metal organic framework derived Zn/N co-doped hydrophilic porous carbon for efficient solid phase microextraction of polar phenols. Microchim Acta. 2021;188(11):400.
Li L, Huang LJ, Sun ST, Yan Q, Shuai Q, Hu SH. An amino-functionalized ordered mesoporous polymer as a fiber coating for solid phase microextraction of phenols prior to GC-MS analysis. Microchim Acta. 2019;186(9):665.
Liu Y, Huang YF, Chen GS, Huang JL, Zheng J, Xu JQ, Liu SQ, Qiu JL, Yin L, Ruan WH, Zhu F, Ouyang GF. A graphene oxide-based polymer composite coating for highly-efficient solid phase microextraction of phenols. Anal Chim Acta. 2018;1015:20–6.
Article CAS PubMed Google Scholar
Zheng J, Chen LY, Xie XT, Tong Q, Ouyang GF. Polydopamine modified ordered mesoporous carbon for synergistic enhancement of enrichment efficiency and mass transfer towards phenols. Anal Chim Acta. 2020;1095:109–17.
Article CAS PubMed Google Scholar
Li Y, Wu XZ, Lyu H, Chen HX, Dang XP. Electrosynthesis of metal coordination cluster Zn5/polyaniline composite coating for headspace solid phase microextraction of nine volatile phenolic compounds in aqueous samples. Microchem J. 2024;197: 109775.
Guo WK, Tao H, Shuai Q, Huang LJ. Architectural engineering inspired in situ growth of solid phase microextraction as outstanding fiber coating for solid-phase microextraction of phenols. Microchem J. 2023;189: 108564.
Fang YY, Zhou FZ, Zhang Q, Deng C, Wu MY, Shen HH, Tang Y, Wang YJ. Hierarchical covalent organic framework hollow nanofibers-bonded stainless-steel fiber for efficient solid phase microextraction. Talanta. 2024;267: 125223.
Article CAS PubMed Google Scholar
Liu L, Meng WK, Li L, Xu G, Wang X, Chen LZ, Wang ML, Lin JM, Zhao RS. Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry. Chem Eng J. 2019;369:920–7.
Yuan YY, Xi XX, Bao T, Bian PG, Pei F, Zhang XH, Wang SF, Wen W. Integrating bimetallic nanoparticles with covalent organic frameworks as multifunctional nanozyme for colorimetric detection of hydrogen peroxide and glutathione. J Anal Test. 2024. https://doi.org/10.1007/s41664-024-00298-y.
Yang LS, Li PF, Han YH, Han DD, Yan HY. Porous chlorine-functionalized covalent organic framework anchored graphene aerogel composite for synergically enhanced solid phase microextraction of polychlorinated naphthalene in environmental water. J Hazard Mater. 2024;469: 133909.
Article CAS PubMed Google Scholar
Guo WK, Tao H, Tao HJ, Shuai Q, Huang LJ. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal Chim Acta. 2024;1287: 341953.
Article CAS PubMed Google Scholar
Hu KX, Wang YJ, Wang GZ, Wu YN, He QH. Research progress of the combination of COFs materials with food safety detection. Food Chem. 2023;429: 136801.
Article CAS PubMed Google Scholar
Huang H, Ouyang D, Lin ZA. Recent advances in surface-assisted laser desorption/ionization mass spectrometry and its imaging for small molecules. J Anal Test. 2022;6(3):217–34.
Huo SH, Deng XH, Yang N, Qin MY, Zhang XA, Yao XQ, An CX, Zhou PX, Lu XQ. A durable hydrophobicity hydrazone covalent organic framework coating for solid phase microextraction of polycyclic aromatic hydrocarbons in food and environmental sample. Chem Eng J. 2024;481: 148562.
Zhou SX, Kuang YX, Shi YR, Hu YL, Chen LY, Zheng J, Ouyang GF. Modulated covalent organic frameworks with higher specific surface area for the ultrasensitive detection of polybrominated biphenyls. Chem Eng J. 2023;453: 139743.
Ni CY, Huang JL, Xie XT, Shi YR, Zheng J, Ouyang GF. Simple fabrication of zirconium and nitrogen co-doped ordered mesoporous carbon for enhanced adsorption performance towards polar pollutants. Anal Chim Acta. 2019;1070:43–50.
Article CAS PubMed Google Scholar
Wang QY, Li LP, Kong LC, Cai GY, Wang P, Zhang J, Zuo W, Tian Y. Compressible amino-modified carboxymethyl chitosan aerogel for efficient Cu(II) adsorption from wastewater. Sep Purif Technol. 2022;293: 121146.
Liu K, Yang J, Liu JL, Shuai Q, Yamauchi Y, Han MS, Huang LJ. Robust self-floating covalent organic framework/chitosan aerogels for the efficient removal of sulfamerazine. Chem Eng J. 2023;472: 144966.
Zhang LW, Li Y, Wang Y, Ma SJ, Ou JJ, Shen YH, Ye ML, Uyama H. Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions. J Hazard Mater. 2021;407: 124390.
Comments (0)