Effect of Nicotine on Pulmonary Pathogenic Bacteria

Loddenkemper R, Brönnecke M, Castell S, Diel R (2016) Tuberkulose und Rauchen. Pneumologie 70(01):17–22

Article  CAS  PubMed  Google Scholar 

Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, et al. (2019) Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 199(2):230–243

Tang H, Zhang Y, Ma Y, Tang M, Shen D, Wang M (2018) Regulation of nicotine tolerance by quorum sensing and high efficiency of quorum quenching under nicotine stress in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol 8 (88):1–11

McEachern EK, Hwang JH, Sladewski KM, Nicatia S, Dewitz C, Mathew DP et al (2015) Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun 83(6):2443–2452

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Haro-Acosta J, Jacobo-Delgado YM, Rodriguez-Carlos A, Torres-Juarez F, Araujo Z, Serrano CJ et al (2021) Nicotine associates to intracellular Mycobacterium tuberculosis inducing genes related with resistance to antimicrobial peptides. Exp Lung Res 47(10):487–493

Article  PubMed  Google Scholar 

Miramontes CV, Rodriguez-Carlos A, Marin-Luevano SP, Trejo Martinez LA, de Haro AJ, Enciso-Moreno JA et al (2021) Nicotine promotes the intracellular growth of Mycobacterium tuberculosis in epithelial cells. Tuberculosis (Edinb) 127:102026

Article  CAS  PubMed  Google Scholar 

Rivas-Santiago B, de Haro-Acosta J, Carlos AR, Garcia-Hernandez MH, Serrano CJ, Gonzalez-Curiel I et al (2023) Nicotine promotes Mycobacterium tuberculosis H37Rv growth and overexpression of virulence genes. Microbiol Immunol 67(8):365–376

Article  CAS  PubMed  Google Scholar 

Mishra S, Mishra MB (2013) Tobacco: its historical, cultural, oral, and periodontal health association. J Int Soc Prevent Commun Dent 3(1):12–18

Article  Google Scholar 

World Heath Organization Bulletin (2023). Tobacco

World Health Organization Bulletin (2013) Tobacco Consumption Epidemic

https://www.lung.org/quit-smoking/smoking-facts/whats-in-a-cigarette

Znyk M, Jurewicz J, Kaleta D (2021) Exposure to heated tobacco products and adverse health effects, a systematic review. Int J Environ Res Public Health 18(12):6651

Youlden DR, Cramb SM, Baade PD (2008) The international epidemiology of lung cancer: geographical distribution and secular trends. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer 3(8):819–831

Article  Google Scholar 

Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR (2023) Cigarette smoke-induced respiratory response: insights into cellular processes and biomarkers. Antioxidants 12(6):1210

Goldfarbmuren KC, Jackson ND, Sajuthi SP, Dyjack N, Li KS, Rios CL et al (2020) Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nat Commun 11(1):2485

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman ML, Zettler PJ, Jordt SE (2023) Synthetic nicotine: science, global legal landscape, and regulatory considerations. World Health Organ Tech Rep Ser 1047:35–60

PubMed  PubMed Central  Google Scholar 

Cessation USDoHaHSS (2020) Smoking cessation: a report of the surgeon general

Shimada A, Iizuka H, Kawaguchi T, Yanagita T (1984) Pharmacodynamic effects of d-nicotine–comparison with l-nicotine. Nihon Yakurigaku Zasshi Folia Pharmacol Japon 84(1):1–10

Article  CAS  Google Scholar 

Domingo-Vidal M, Whitaker-Menezes D, Martos-Rus C, Tassone P, Snyder CM, Tuluc M, Philp N, Curry J, Martinez-Outschoorn U (2019) Cigarette smoke induces metabolic reprogramming of the tumor stroma in head and neck squamous cell carcinoma. Mol Cancer Res 17(9):1893–1909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy SE (2021) Biochemistry of nicotine metabolism and its relevance to lung cancer. J Biol Chem 296:100722

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oakes JM, Xu J, Morris TM, Fried ND, Pearson CS, Lobell TD et al (2020) Effects of chronic nicotine inhalation on systemic and pulmonary blood pressure and right ventricular remodeling in mice. Hypertension (Dallas, Tex: 1979) 75(5):1305–1314

Article  CAS  PubMed  Google Scholar 

Devi MR, Arvind T, Kumar PS (2013) ECG changes in smokers and non smokers—a comparative study. J Clin Diagn Res: JCDR 7(5):824–826

PubMed  PubMed Central  Google Scholar 

Rivas-Santiago B, Contreras JL, Sada E, Hernández-Pando R (2008) The potential role of lung epithelial cells and β-defensins in experimental latent tuberculosis. Scand J Immunol 67(5):448–452

Article  CAS  PubMed  Google Scholar 

Leslie LJ, Vasanthi Bathrinarayanan P, Jackson P, Mabiala Ma Muanda JA, Pallett R, Stillman CJP et al (2017) A comparative study of electronic cigarette vapor extracts on airway-related cell lines in vitro. Inhalat Toxicol 29(3):126–136

Article  CAS  Google Scholar 

Roxlau ET, Pak O, Hadzic S, Garcia-Castro CF, Gredic M, Wu CY, et al. (2023) Nicotine promotes e-cigarette vapour-induced lung inflammation and structural alterations. Eur Respir J 61(6):2200951

Miramontes CV, Rodríguez-Carlos A, Marin-Luévano SP, Martínez LAT, de Haro AJ, Enciso-Moreno JA et al (2021) Nicotine promotes the intracellular growth of Mycobacterium tuberculosis in epithelial cells. Tuberculosis 127:102026

Article  CAS  PubMed  Google Scholar 

Rivas-Santiago B, Schwander SK, Sarabia C, Diamond G, Klein-Patel ME, Hernandez-Pando R et al (2005) Human β-defensin 2 is expressed and associated with Mycobacterium tuberculosis during infection of human alveolar epithelial cells. Infect Immun 73(8):4505–4511

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D et al (2008) Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun 76(3):935–941

Article  CAS  PubMed  Google Scholar 

Hosur V, Loring RH (2011) α4β2 nicotinic receptors partially mediate anti-inflammatory effects through Janus kinase 2-signal transducer and activator of transcription 3 but not calcium or cAMP signaling. Mol Pharmacol 79(1):167–174

Article  CAS  PubMed  Google Scholar 

Gomez AC, Rodriguez-Fernandez P, Villar-Hernandez R, Gibert I, Muriel-Moreno B, Lacoma A et al (2020) E-cigarettes: effects in phagocytosis and cytokines response against Mycobacterium tuberculosis. PLoS ONE 15(2):e0228919

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cook R, Davidson P, Martin R (2019) E-cigarettes helped more smokers quit than nicotine replacement therapy. BMJ (Clin Res ed) 365:l2036

Google Scholar 

Grana R, Benowitz N, Glantz SA (2014) E-cigarettes: a scientific review. Circulation 129(19):1972–1986

Article  PubMed  PubMed Central  Google Scholar 

Scott A, Lugg ST, Aldridge K, Lewis KE, Bowden A, Mahida RY et al (2018) Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax 73(12):1161–1169

Article  PubMed  Google Scholar 

Divangahi M, Mostowy S, Coulombe FO, Kozak R, Guillot LC, Veyrier FDR et al (2008) NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181(10):7157–7165

Article  CAS  PubMed  Google Scholar 

Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J et al (2004) Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 164(1):49–57

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reiling N, Hölscher C, Fehrenbach A, Kröger S, Kirschning CJ, Goyert S et al (2002) Cutting edge: toll-like receptor (TLR) 2-and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169(7):3480–3484

Article  CAS  PubMed  Google Scholar 

Valdez-Miramontes C, Trejo Martínez L, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano S, de Haro-Acosta J et al (2020) Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 199(2):230–243

Article  CAS  PubMed  Google Scholar 

Rocha-Ramírez LM, Estrada-García I, López-Marín LM, Segura-Salinas E, Méndez-Aragón P, Van Soolingen D et al (2008) Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophages. Tuberculosis 88(3):212–220

Article  PubMed  Google Scholar 

Sun Y, Li Q, Gui H, Xu D-P, Yang Y-L, Su D-F et al (2013) MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 23(11):1270–1283

Comments (0)

No login
gif