Whole-Genome Sequencing And Characterization Of Two Bacillus velezensis Strains from Termitarium and A Comprehensive Comparative Genomic Analysis of Biosynthetic Gene Clusters

Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13(5):589–594. https://doi.org/10.1016/j.mib.2010.08.005

Article  CAS  PubMed  Google Scholar 

Akber MA, Mubeen M, Sohail MA, Khan SW, Solanki MK, Khalid R, Abbas A, Divvela PK, Zhou L (2023) Global distribution, traditional and modern detection, diagnostic, and management approaches of Rhizoctonia solani associated with legume crops. Front Microbiol 13:1091288. https://doi.org/10.3389/fmicb.2022.1091288

Article  PubMed  PubMed Central  Google Scholar 

Chen M, Wang J, Liu B, Zhu Y, Xiao R, Yang W, Ge C, Chen Z (2020) Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol 20(1):160. https://doi.org/10.1186/s12866-020-01851-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Scharf ME (2010) Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Sci 17(3):163–165. https://doi.org/10.1111/j.1744-7917.2010.01348.x

Article  Google Scholar 

Enagbonma BJ, Babalola OO (2023) Metagenomics reveals the microbiome multifunctionalities of environmental importance from termite mound soils. Bioinform Biol Insights 17:11779322231184024. https://doi.org/10.1177/11779322231184025

Article  PubMed  PubMed Central  Google Scholar 

Arumugam M, Sundararaju S, Jagadesan S, Gunasekaran P, Rajendhran J (2021) Metagenomic analysis of microbial community affiliated with termitarium reveals high lignocellulolytic potential. Curr Microbiol 78(4):1551–1565. https://doi.org/10.1007/s00284-021-02427-7

Article  CAS  PubMed  Google Scholar 

Adebajo SO, Akintokun PO, Ezaka E, Ojo AE, Olannye DU, Ayodeji OD (2021) Use of termitarium soil as a viable source for biofertilizer and biocontrol. Bull Natl Res Centre 45(1):100. https://doi.org/10.1186/s42269-021-00560-8

Article  Google Scholar 

Pranav PS, Mahalakshmi B, Sivakumar R, Karthikeyan R, Rajendhran J (2021) Whole-genome sequence analysis of Paenibacillus alvei JR949 revealed biosynthetic gene clusters coding for novel antimicrobials. Curr Microbiol 78(4):1168–1176. https://doi.org/10.1007/s00284-021-02393-0

Article  CAS  PubMed  Google Scholar 

Miljaković D, Marinković J, Balešević-Tubić S (2020) The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7):1037. https://doi.org/10.3390/microorganisms8071037

Rabbee M, Ali Md, Choi J, Hwang B, Jeong S, Baek K (2019) Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24(6):1046. https://doi.org/10.3390/molecules24061046

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490. https://doi.org/10.3389/fmicb.2017.01490

Article  PubMed  PubMed Central  Google Scholar 

Schultz M, Burton JP, Chanyi RM (2017) Use of Bacillus in human intestinal probiotic applications. In: The microbiota in gastrointestinal pathophysiology. Elsevier, AMsterdam, pp 119–123. https://doi.org/10.1016/B978-0-12-804024-9.00011-2

Borriss R (2020) Bacillus. In: Beneficial microbes in agro-ecology. Elsevier, Amsterdam, pp 107–132. https://doi.org/10.1016/B978-0-12-823414-3.00007-1

Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39

Article  CAS  PubMed  Google Scholar 

Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500

Google Scholar 

Adeniji AA, Loots DT, Babalola OO (2019) Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation. Appl Microbiol Biotechnol 103:3669–3682

Article  CAS  PubMed  Google Scholar 

Khalid F, Khalid A, Fu Y, Hu Q, Zheng Y, Khan S, Wang Z (2021) Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 59:627–633

Article  PubMed  Google Scholar 

Ferbiyanto A, Rusmana I, Raffiudin R (2015) Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI J Biosci 22(4):197–200. https://doi.org/10.1016/j.hjb.2015.07.001

Article  Google Scholar 

Hockett KL, Baltrus DA (2017) Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. J Visualized Exp JoVE 119:55064. https://doi.org/10.3791/55064

Article  CAS  Google Scholar 

Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharmaceutical Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Article  Google Scholar 

Magaldi S, Mata-Essayag S, Hartung De Capriles C, Perez C, Colella MT, Olaizola C, Ontiveros Y (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8(1):39–45. https://doi.org/10.1016/j.ijid.2003.03.002

Article  CAS  PubMed  Google Scholar 

Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y (2023) Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol 14:1322910. https://doi.org/10.3389/fmicb.2023.1322910

Article  PubMed  PubMed Central  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MCJ (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (Reading, England) 158(Pt 4):1005–1015. https://doi.org/10.1099/mic.0.055459-0

Article  CAS  PubMed  Google Scholar 

Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50(D1):D801–D807

Article  CAS  PubMed  Google Scholar 

Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

Article  CAS  PubMed  Google Scholar 

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693.

Fazle Rabbee M, Baek K-H (2020) Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules 25(21):4973. https://doi.org/10.3390/molecules25214973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

Article  CAS  PubMed  Google Scholar 

Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M (2017) Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J Biotechnol 249:20–24. https://doi.org/10.1016/j.jbiotec.2017.03.018

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif