Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13(5):589–594. https://doi.org/10.1016/j.mib.2010.08.005
Article CAS PubMed Google Scholar
Akber MA, Mubeen M, Sohail MA, Khan SW, Solanki MK, Khalid R, Abbas A, Divvela PK, Zhou L (2023) Global distribution, traditional and modern detection, diagnostic, and management approaches of Rhizoctonia solani associated with legume crops. Front Microbiol 13:1091288. https://doi.org/10.3389/fmicb.2022.1091288
Article PubMed PubMed Central Google Scholar
Chen M, Wang J, Liu B, Zhu Y, Xiao R, Yang W, Ge C, Chen Z (2020) Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol 20(1):160. https://doi.org/10.1186/s12866-020-01851-2
Article CAS PubMed PubMed Central Google Scholar
Sun J, Scharf ME (2010) Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Sci 17(3):163–165. https://doi.org/10.1111/j.1744-7917.2010.01348.x
Enagbonma BJ, Babalola OO (2023) Metagenomics reveals the microbiome multifunctionalities of environmental importance from termite mound soils. Bioinform Biol Insights 17:11779322231184024. https://doi.org/10.1177/11779322231184025
Article PubMed PubMed Central Google Scholar
Arumugam M, Sundararaju S, Jagadesan S, Gunasekaran P, Rajendhran J (2021) Metagenomic analysis of microbial community affiliated with termitarium reveals high lignocellulolytic potential. Curr Microbiol 78(4):1551–1565. https://doi.org/10.1007/s00284-021-02427-7
Article CAS PubMed Google Scholar
Adebajo SO, Akintokun PO, Ezaka E, Ojo AE, Olannye DU, Ayodeji OD (2021) Use of termitarium soil as a viable source for biofertilizer and biocontrol. Bull Natl Res Centre 45(1):100. https://doi.org/10.1186/s42269-021-00560-8
Pranav PS, Mahalakshmi B, Sivakumar R, Karthikeyan R, Rajendhran J (2021) Whole-genome sequence analysis of Paenibacillus alvei JR949 revealed biosynthetic gene clusters coding for novel antimicrobials. Curr Microbiol 78(4):1168–1176. https://doi.org/10.1007/s00284-021-02393-0
Article CAS PubMed Google Scholar
Miljaković D, Marinković J, Balešević-Tubić S (2020) The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7):1037. https://doi.org/10.3390/microorganisms8071037
Rabbee M, Ali Md, Choi J, Hwang B, Jeong S, Baek K (2019) Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24(6):1046. https://doi.org/10.3390/molecules24061046
Article CAS PubMed PubMed Central Google Scholar
Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490. https://doi.org/10.3389/fmicb.2017.01490
Article PubMed PubMed Central Google Scholar
Schultz M, Burton JP, Chanyi RM (2017) Use of Bacillus in human intestinal probiotic applications. In: The microbiota in gastrointestinal pathophysiology. Elsevier, AMsterdam, pp 119–123. https://doi.org/10.1016/B978-0-12-804024-9.00011-2
Borriss R (2020) Bacillus. In: Beneficial microbes in agro-ecology. Elsevier, Amsterdam, pp 107–132. https://doi.org/10.1016/B978-0-12-823414-3.00007-1
Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39
Article CAS PubMed Google Scholar
Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500
Adeniji AA, Loots DT, Babalola OO (2019) Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation. Appl Microbiol Biotechnol 103:3669–3682
Article CAS PubMed Google Scholar
Khalid F, Khalid A, Fu Y, Hu Q, Zheng Y, Khan S, Wang Z (2021) Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 59:627–633
Ferbiyanto A, Rusmana I, Raffiudin R (2015) Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI J Biosci 22(4):197–200. https://doi.org/10.1016/j.hjb.2015.07.001
Hockett KL, Baltrus DA (2017) Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. J Visualized Exp JoVE 119:55064. https://doi.org/10.3791/55064
Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharmaceutical Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Magaldi S, Mata-Essayag S, Hartung De Capriles C, Perez C, Colella MT, Olaizola C, Ontiveros Y (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8(1):39–45. https://doi.org/10.1016/j.ijid.2003.03.002
Article CAS PubMed Google Scholar
Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y (2023) Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol 14:1322910. https://doi.org/10.3389/fmicb.2023.1322910
Article PubMed PubMed Central Google Scholar
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Article CAS PubMed PubMed Central Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Article CAS PubMed PubMed Central Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114
Article CAS PubMed PubMed Central Google Scholar
Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MCJ (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (Reading, England) 158(Pt 4):1005–1015. https://doi.org/10.1099/mic.0.055459-0
Article CAS PubMed Google Scholar
Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50(D1):D801–D807
Article CAS PubMed Google Scholar
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153
Article CAS PubMed Google Scholar
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693.
Fazle Rabbee M, Baek K-H (2020) Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules 25(21):4973. https://doi.org/10.3390/molecules25214973
Article CAS PubMed PubMed Central Google Scholar
Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563
Article CAS PubMed Google Scholar
Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M (2017) Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J Biotechnol 249:20–24. https://doi.org/10.1016/j.jbiotec.2017.03.018
Comments (0)