Acute Phytotoxicity and Antifungal Effect of Nanochitosan Particles on Colletotrichum fructicola with Low Susceptibility to Chitosan

FAO (2023) Major Tropical Fruits Market Review – Preliminary results 2022. Rome

Zakaria L (2021) Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops—a review. Agric 11:297. https://doi.org/10.3390/AGRICULTURE11040297

Article  CAS  Google Scholar 

Serda M, Becker FG, Cleary M et al (2015) Colletotrichum gloeosporioides: An anthracnose causing pathogen of fruits and vegetables. Biosci Biotechnol Res Asia 12:1233–1246

Article  Google Scholar 

Bragard C, Dehnen-Schmutz K, Di Serio F et al (2021) Pest categorisation of Colletotrichum fructicola. EFSA J 19:e06803. https://doi.org/10.2903/J.EFSA.2021.6803

Article  PubMed  PubMed Central  Google Scholar 

Lin WL, Duan CH, Wang CL (2023) Identification and virulence of Colletotrichum species causing anthracnose on mango. Plant Pathol 72:623–635. https://doi.org/10.1111/PPA.13682

Article  CAS  Google Scholar 

Dowling M, Peres N, Villani S, Schnabel G (2020) Managing Colletotrichum on fruit crops: a “complex” challenge. Plant Dis 104:2301–2316. https://doi.org/10.1094/PDIS-11-19-2378-FE/ASSET/IMAGES/LARGE/PDIS-11-19-2378-FE_F6.JPEG

Article  PubMed  Google Scholar 

Ons L, Bylemans D, Thevissen K, Cammue BPA (2020) Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorg 8:1930. https://doi.org/10.3390/MICROORGANISMS8121930

Article  CAS  Google Scholar 

Gama AB, Cordova LG, Rebello CS, Peres NA (2021) Validation of a decision support system for blueberry anthracnose and fungicide sensitivity of Colletotrichum gloeosporioides isolates. Plant Dis. https://doi.org/10.1094/PDIS-09-20-1961-RE/ASSET/IMAGES/LARGE/PDIS-09-20-1961-REF3.JPEG

Article  PubMed  Google Scholar 

Gikas GD, Parlakidis P, Mavropoulos T, Vryzas Z (2022) Particularities of fungicides and factors affecting their fate and removal efficacy: a review. Sustain 14:4056. https://doi.org/10.3390/SU14074056

Article  Google Scholar 

Loron A, Wang Y, Atanasova V et al (2023) Chitosan for eco-friendly control of mycotoxinogenic Fusarium graminearum. Food Hydrocoll 134:108067. https://doi.org/10.1016/J.FOODHYD.2022.108067

Article  CAS  Google Scholar 

Gao Y, Wu Y (2022) Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int J Biol Macromol 203:379–388. https://doi.org/10.1016/J.IJBIOMAC.2022.01.162

Article  CAS  PubMed  Google Scholar 

Sabar S, Wilson LD, Jawad AH et al (2023) Chitosan and chitosan nanoparticles: parameters enhancing antifungal activity. Mol 28:2996. https://doi.org/10.3390/MOLECULES28072996

Article  Google Scholar 

Khanmohammadi M, Elmizadeh H, Ghasemi K (2015) Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. Iran J Pharm Res IJPR 14:665–675

CAS  PubMed  Google Scholar 

Chavez-Magdaleno ME, Gonzalez-Estrada RR, Ramos-Guerrero A et al (2018) Effect of pepper tree (Schinus molle) essential oil-loaded chitosan bio-nanocomposites on postharvest control of Colletotrichum gloeosporioides and quality evaluations in avocado (Persea americana) cv. Hass Food Sci Biotechnol 27:1871–1875. https://doi.org/10.1007/s10068-018-0410-5

Article  CAS  PubMed  Google Scholar 

Barrera-Necha LL, Correa-Pacheco ZN, Bautista-Baños S et al (2018) Synthesis and characterization of chitosan nanoparticles loaded botanical extracts with antifungal activity on Colletotrichum gloeosporioides and Alternaria species. Adv Microbiol 08:286–296. https://doi.org/10.4236/AIM.2018.84019

Article  CAS  Google Scholar 

Quattrocelli P, Puntoni G, Bianchi S et al (2020) Sensitivity to chitosan and chitosan nanoparticles by three Colletotrichum species belonging to C. acutatum species complex. J PLANT Pathol 101:841–841. https://doi.org/10.1007/S42161-019-00394-4

Article  Google Scholar 

Gowda S, Sriram S (2023) Green synthesis of chitosan silver nanocomposites and their antifungal activity against Colletotrichum truncatum causing anthracnose in chillies. Plant Nano Biol 5:100041. https://doi.org/10.1016/J.PLANA.2023.100041

Article  Google Scholar 

Valenzuela-Ortiz G, Gaxiola-Camacho SM, San-Martín-hernández C et al (2022) Chitosan sensitivity of fungi isolated from mango (Mangifera indica L.) with anthracnose. Mol 27:1244. https://doi.org/10.3390/MOLECULES27041244

Article  CAS  Google Scholar 

Asgari-Targhi G, Iranbakhsh A, Ardebili ZO (2018) Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem 127:393–402. https://doi.org/10.1016/J.PLAPHY.2018.04.013

Article  CAS  PubMed  Google Scholar 

Gálvez-Iriqui AC, Cortez-Rocha MO, Burgos-Hernández A et al (2019) Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-019-09670-w

Article  PubMed  Google Scholar 

Brugnerotto J, Lizardi J, Goycoolea FM et al (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8

Article  CAS  Google Scholar 

Gálvez-Iriqui AC, Plascencia-Jatomea M, Bautista-Baños S (2020) Lysozymes: characteristics, mechanism of action and technological applications on the control of pathogenic microorganisms. Rev Mex Fitopatol Mex J Phytopathol. https://doi.org/10.18781/r.mex.fit.2005-6

Article  Google Scholar 

Martínez-Camacho AP, Cortez-Rocha MO, Castillo-Ortega MM et al (2011) Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polym Int 60:1663–1669. https://doi.org/10.1002/pi.3174

Article  CAS  Google Scholar 

Lewis-Luján LM, Rosas-Burgos EC, Ezquerra-Brauer JM et al (2022) Inhibition of pathogenic bacteria and fungi by natural phenoxazinone from Octopus ommochrome pigments. J Microbiol Biotechnol 32:989–1002. https://doi.org/10.4014/JMB.2206.06043

Article  PubMed  PubMed Central  Google Scholar 

Escobar ML, Rivera A, Aristizábal GFA (2010) Comparison of resazurin and MTT methods on studies of cytotoxicity in human tumor cell lines. Vitae 17:67–74. https://doi.org/10.17533/udea.vitae.4977

Article  Google Scholar 

Bagur-González MG, Estepa-Molina C, Martín-Peinado F, Morales-Ruano S (2011) Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J Soils Sediments 11:281–289. https://doi.org/10.1007/s11368-010-0285-4

Article  CAS  Google Scholar 

Gálvez-Iriqui AC, García-Romo JS, Cortez-Rocha MO et al (2021) Phytotoxicity, cytotoxicity, and in vivo antifungal efficacy of chitosan nanobiocomposites on prokaryotic and eukaryotic cells. Environ Sci Pollut Res 28:3051–3065. https://doi.org/10.1007/S11356-020-10716-0/FIGURES/6

Article  Google Scholar 

Tang ESK, Huang M, Lim LY (2003) Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm 265:103–114. https://doi.org/10.1016/S0378-5173(03)00408-3

Article  CAS  PubMed  Google Scholar 

Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:1–9. https://doi.org/10.1155/2012/632698

Article  CAS  Google Scholar 

Floris A, Meloni MC, Lai F et al (2013) Cavitation effect on chitosan nanoparticle size: a possible approach to protect drugs from ultrasonic stress. Carbohydr Polym 94:619–625. https://doi.org/10.1016/J.CARBPOL.2013.01.017

Article  CAS  PubMed  Google Scholar 

Savitri E, Juliastuti SR, Handaratri A et al (2014) Degradation of chitosan by sonication in very-low-concentration acetic acid. Polym Degrad Stab 110:344–352. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2014.09.010

Article  CAS  Google Scholar 

Khoerunnisa F, Yolanda YD, Nurhayati M et al (2021) Ultrasonic synthesis of nanochitosan and its size effects on turbidity removal and dealkalization in wastewater treatment. Invent 6:98. https://doi.org/10.3390/INVENTIONS6040098

Article  Google Scholar 

Zheng H, Cui S, Sun B et al (2022) Synergistic effect of discrete ultrasonic and H2O2 on physicochemical properties of chitosan. Carbohydr Polym 291:119598. https://doi.org/10.1016/J.CARBPOL.2022.119598

Article  CAS  PubMed 

Comments (0)

No login
gif