FAO (2023) Major Tropical Fruits Market Review – Preliminary results 2022. Rome
Zakaria L (2021) Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops—a review. Agric 11:297. https://doi.org/10.3390/AGRICULTURE11040297
Serda M, Becker FG, Cleary M et al (2015) Colletotrichum gloeosporioides: An anthracnose causing pathogen of fruits and vegetables. Biosci Biotechnol Res Asia 12:1233–1246
Bragard C, Dehnen-Schmutz K, Di Serio F et al (2021) Pest categorisation of Colletotrichum fructicola. EFSA J 19:e06803. https://doi.org/10.2903/J.EFSA.2021.6803
Article PubMed PubMed Central Google Scholar
Lin WL, Duan CH, Wang CL (2023) Identification and virulence of Colletotrichum species causing anthracnose on mango. Plant Pathol 72:623–635. https://doi.org/10.1111/PPA.13682
Dowling M, Peres N, Villani S, Schnabel G (2020) Managing Colletotrichum on fruit crops: a “complex” challenge. Plant Dis 104:2301–2316. https://doi.org/10.1094/PDIS-11-19-2378-FE/ASSET/IMAGES/LARGE/PDIS-11-19-2378-FE_F6.JPEG
Ons L, Bylemans D, Thevissen K, Cammue BPA (2020) Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorg 8:1930. https://doi.org/10.3390/MICROORGANISMS8121930
Gama AB, Cordova LG, Rebello CS, Peres NA (2021) Validation of a decision support system for blueberry anthracnose and fungicide sensitivity of Colletotrichum gloeosporioides isolates. Plant Dis. https://doi.org/10.1094/PDIS-09-20-1961-RE/ASSET/IMAGES/LARGE/PDIS-09-20-1961-REF3.JPEG
Gikas GD, Parlakidis P, Mavropoulos T, Vryzas Z (2022) Particularities of fungicides and factors affecting their fate and removal efficacy: a review. Sustain 14:4056. https://doi.org/10.3390/SU14074056
Loron A, Wang Y, Atanasova V et al (2023) Chitosan for eco-friendly control of mycotoxinogenic Fusarium graminearum. Food Hydrocoll 134:108067. https://doi.org/10.1016/J.FOODHYD.2022.108067
Gao Y, Wu Y (2022) Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int J Biol Macromol 203:379–388. https://doi.org/10.1016/J.IJBIOMAC.2022.01.162
Article CAS PubMed Google Scholar
Sabar S, Wilson LD, Jawad AH et al (2023) Chitosan and chitosan nanoparticles: parameters enhancing antifungal activity. Mol 28:2996. https://doi.org/10.3390/MOLECULES28072996
Khanmohammadi M, Elmizadeh H, Ghasemi K (2015) Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. Iran J Pharm Res IJPR 14:665–675
Chavez-Magdaleno ME, Gonzalez-Estrada RR, Ramos-Guerrero A et al (2018) Effect of pepper tree (Schinus molle) essential oil-loaded chitosan bio-nanocomposites on postharvest control of Colletotrichum gloeosporioides and quality evaluations in avocado (Persea americana) cv. Hass Food Sci Biotechnol 27:1871–1875. https://doi.org/10.1007/s10068-018-0410-5
Article CAS PubMed Google Scholar
Barrera-Necha LL, Correa-Pacheco ZN, Bautista-Baños S et al (2018) Synthesis and characterization of chitosan nanoparticles loaded botanical extracts with antifungal activity on Colletotrichum gloeosporioides and Alternaria species. Adv Microbiol 08:286–296. https://doi.org/10.4236/AIM.2018.84019
Quattrocelli P, Puntoni G, Bianchi S et al (2020) Sensitivity to chitosan and chitosan nanoparticles by three Colletotrichum species belonging to C. acutatum species complex. J PLANT Pathol 101:841–841. https://doi.org/10.1007/S42161-019-00394-4
Gowda S, Sriram S (2023) Green synthesis of chitosan silver nanocomposites and their antifungal activity against Colletotrichum truncatum causing anthracnose in chillies. Plant Nano Biol 5:100041. https://doi.org/10.1016/J.PLANA.2023.100041
Valenzuela-Ortiz G, Gaxiola-Camacho SM, San-Martín-hernández C et al (2022) Chitosan sensitivity of fungi isolated from mango (Mangifera indica L.) with anthracnose. Mol 27:1244. https://doi.org/10.3390/MOLECULES27041244
Asgari-Targhi G, Iranbakhsh A, Ardebili ZO (2018) Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem 127:393–402. https://doi.org/10.1016/J.PLAPHY.2018.04.013
Article CAS PubMed Google Scholar
Gálvez-Iriqui AC, Cortez-Rocha MO, Burgos-Hernández A et al (2019) Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-019-09670-w
Brugnerotto J, Lizardi J, Goycoolea FM et al (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8
Gálvez-Iriqui AC, Plascencia-Jatomea M, Bautista-Baños S (2020) Lysozymes: characteristics, mechanism of action and technological applications on the control of pathogenic microorganisms. Rev Mex Fitopatol Mex J Phytopathol. https://doi.org/10.18781/r.mex.fit.2005-6
Martínez-Camacho AP, Cortez-Rocha MO, Castillo-Ortega MM et al (2011) Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polym Int 60:1663–1669. https://doi.org/10.1002/pi.3174
Lewis-Luján LM, Rosas-Burgos EC, Ezquerra-Brauer JM et al (2022) Inhibition of pathogenic bacteria and fungi by natural phenoxazinone from Octopus ommochrome pigments. J Microbiol Biotechnol 32:989–1002. https://doi.org/10.4014/JMB.2206.06043
Article PubMed PubMed Central Google Scholar
Escobar ML, Rivera A, Aristizábal GFA (2010) Comparison of resazurin and MTT methods on studies of cytotoxicity in human tumor cell lines. Vitae 17:67–74. https://doi.org/10.17533/udea.vitae.4977
Bagur-González MG, Estepa-Molina C, Martín-Peinado F, Morales-Ruano S (2011) Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J Soils Sediments 11:281–289. https://doi.org/10.1007/s11368-010-0285-4
Gálvez-Iriqui AC, García-Romo JS, Cortez-Rocha MO et al (2021) Phytotoxicity, cytotoxicity, and in vivo antifungal efficacy of chitosan nanobiocomposites on prokaryotic and eukaryotic cells. Environ Sci Pollut Res 28:3051–3065. https://doi.org/10.1007/S11356-020-10716-0/FIGURES/6
Tang ESK, Huang M, Lim LY (2003) Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm 265:103–114. https://doi.org/10.1016/S0378-5173(03)00408-3
Article CAS PubMed Google Scholar
Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:1–9. https://doi.org/10.1155/2012/632698
Floris A, Meloni MC, Lai F et al (2013) Cavitation effect on chitosan nanoparticle size: a possible approach to protect drugs from ultrasonic stress. Carbohydr Polym 94:619–625. https://doi.org/10.1016/J.CARBPOL.2013.01.017
Article CAS PubMed Google Scholar
Savitri E, Juliastuti SR, Handaratri A et al (2014) Degradation of chitosan by sonication in very-low-concentration acetic acid. Polym Degrad Stab 110:344–352. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2014.09.010
Khoerunnisa F, Yolanda YD, Nurhayati M et al (2021) Ultrasonic synthesis of nanochitosan and its size effects on turbidity removal and dealkalization in wastewater treatment. Invent 6:98. https://doi.org/10.3390/INVENTIONS6040098
Zheng H, Cui S, Sun B et al (2022) Synergistic effect of discrete ultrasonic and H2O2 on physicochemical properties of chitosan. Carbohydr Polym 291:119598. https://doi.org/10.1016/J.CARBPOL.2022.119598
Comments (0)