Sangkhobol V, Skerman VBD (1981) Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Evol Microbiol 31(3):285–293. https://doi.org/10.1099/00207713-31-3-285
Kämpfer P, Lodders N, Falsen E (2011) Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 61(3):518–523. https://doi.org/10.1099/ijs.0.023002-0
Article PubMed CAS Google Scholar
Parte AC (2018) LPSN-List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829. https://doi.org/10.1099/ijsem.0.002786
Dong L, Li S, Shi GY et al (2023) Aridibaculum aurantiacum gen nov., sp. Nov., isolated from the Kumtag Desert soil. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005823
Zheng ZH, Lu CY, Lian WH et al (2023) Danxiaibacter flavus gen nov., sp. nov., a novel bacterium of the family chitinophagaceae isolated from forest soil on Danxia Mountain. Int J Syst Evol Microbiol 73:6082. https://doi.org/10.1099/ijsem.0.006082
Yuan C, Liu B, Wang L et al (2023) Paraflavisolibacter caeni gen nov., sp. nov., a novel taxon within the family chitinophagaceae isolated from sludge. Int J Syst Evol Microbiol 73:5849. https://doi.org/10.1099/ijsem.0.005849
Kim HS, Kim JS, Suh MK et al (2024) A novel plant growth-promoting rhizobacterium, Rhizosphaericola mali gen nov., sp. nov., isolated from healthy apple tree soil. Sci Rep 14(1):1038. https://doi.org/10.1038/s41598-024-51492-y
Article PubMed PubMed Central CAS Google Scholar
Zhao R, Chen XY, Li XD et al (2014) Cnuella takakiae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 64:607–612. https://doi.org/10.1099/ijs.0.055749-0
Article PubMed CAS Google Scholar
Wang C, Zhang R, Liu BT et al (2019) Paracnuella aquatica gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring. Int J Syst Evol Microbiol 69:2360–2366. https://doi.org/10.1099/ijsem.0.003476
Article PubMed CAS Google Scholar
Li R, Zheng JW, Wang R et al (2010) Biochemical degradation pathway of dimethoate by Paracoccus sp. Lgjj-3 isolated from treatment wastewater. Int J Biodeterior Biodegrad 64:51–57. https://doi.org/10.1016/j.ibiod.2009.10.007
Ke Z, Lan M, Yang T et al (2021) A two-component monooxygenase for continuous denitration and dechlorination of chlorinated 4-nitrophenol in Ensifer sp. strain 22–1. Environ Res 198:111216. https://doi.org/10.1016/j.envres.2021.111216
Article PubMed CAS Google Scholar
Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44(4):992–993. https://doi.org/10.1128/aem.44.4.992-993.1982
Article PubMed PubMed Central CAS Google Scholar
Mccarthy AJ, Cross T (1984) A taxonomic study of Thermomonospora and other monosporic actinomycetes. Microbiol-SGM 130:5–25. https://doi.org/10.1099/00221287-130-1-5
Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52(Pt 3):1049–1070. https://doi.org/10.1099/00207713-52-3-1049
Article PubMed CAS Google Scholar
Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Microbial ID Inc., Newark
Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005. https://doi.org/10.1139/m96-128
Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. Chemical methods in bacterial systematics. Wiley, London, pp 267–284
Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 663:199–202. https://doi.org/10.1016/0378-1097(90)90282-U
Marmur J (1963) A procedure for the isolation of deoxyribonucleic acid from microorganisms. Method Enzymol 6(2):726–738. https://doi.org/10.1016/S0022-2836(61)80047-8
Frank JA, Reich CI, Sharma S et al (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. https://doi.org/10.1128/AEM.02272-07
Article PubMed PubMed Central CAS Google Scholar
Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755
Article PubMed PubMed Central CAS Google Scholar
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98. https://doi.org/10.1021/bk-1999-0734.ch008
Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882. https://doi.org/10.1093/NAR/25.24.4876
Article PubMed PubMed Central CAS Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Article PubMed CAS Google Scholar
Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121
Article PubMed PubMed Central CAS Google Scholar
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120
Article PubMed PubMed Central CAS Google Scholar
Auch AF, von Jan M, Klenk HP et al (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134. https://doi.org/10.4056/sigs.531120
Article PubMed PubMed Central Google Scholar
Parks DH, Chuvochina M, Waite DW et al (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004. https://doi.org/10.1038/nbt.4229
Article PubMed CAS Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A et al (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300
Article PubMed CAS Google Scholar
Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucl Acids Res 47(W1):W256–W259. https://doi.org/10.1093/nar/gkz239
Article PubMed PubMed Central CAS Google Scholar
Meier-Kolthoff JP,
Comments (0)