Polluticaenibacter yanchengensis gen. nov., sp. nov., A Novel Taxon Within the Family Chitinophagaceae Isolated from Activated Sludge

Sangkhobol V, Skerman VBD (1981) Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Evol Microbiol 31(3):285–293. https://doi.org/10.1099/00207713-31-3-285

Article  Google Scholar 

Kämpfer P, Lodders N, Falsen E (2011) Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 61(3):518–523. https://doi.org/10.1099/ijs.0.023002-0

Article  PubMed  CAS  Google Scholar 

Parte AC (2018) LPSN-List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829. https://doi.org/10.1099/ijsem.0.002786

Article  PubMed  Google Scholar 

Dong L, Li S, Shi GY et al (2023) Aridibaculum aurantiacum gen nov., sp. Nov., isolated from the Kumtag Desert soil. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005823

Article  PubMed  Google Scholar 

Zheng ZH, Lu CY, Lian WH et al (2023) Danxiaibacter flavus gen nov., sp. nov., a novel bacterium of the family chitinophagaceae isolated from forest soil on Danxia Mountain. Int J Syst Evol Microbiol 73:6082. https://doi.org/10.1099/ijsem.0.006082

Article  CAS  Google Scholar 

Yuan C, Liu B, Wang L et al (2023) Paraflavisolibacter caeni gen nov., sp. nov., a novel taxon within the family chitinophagaceae isolated from sludge. Int J Syst Evol Microbiol 73:5849. https://doi.org/10.1099/ijsem.0.005849

Article  CAS  Google Scholar 

Kim HS, Kim JS, Suh MK et al (2024) A novel plant growth-promoting rhizobacterium, Rhizosphaericola mali gen nov., sp. nov., isolated from healthy apple tree soil. Sci Rep 14(1):1038. https://doi.org/10.1038/s41598-024-51492-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao R, Chen XY, Li XD et al (2014) Cnuella takakiae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 64:607–612. https://doi.org/10.1099/ijs.0.055749-0

Article  PubMed  CAS  Google Scholar 

Wang C, Zhang R, Liu BT et al (2019) Paracnuella aquatica gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring. Int J Syst Evol Microbiol 69:2360–2366. https://doi.org/10.1099/ijsem.0.003476

Article  PubMed  CAS  Google Scholar 

Li R, Zheng JW, Wang R et al (2010) Biochemical degradation pathway of dimethoate by Paracoccus sp. Lgjj-3 isolated from treatment wastewater. Int J Biodeterior Biodegrad 64:51–57. https://doi.org/10.1016/j.ibiod.2009.10.007

Article  CAS  Google Scholar 

Ke Z, Lan M, Yang T et al (2021) A two-component monooxygenase for continuous denitration and dechlorination of chlorinated 4-nitrophenol in Ensifer sp. strain 22–1. Environ Res 198:111216. https://doi.org/10.1016/j.envres.2021.111216

Article  PubMed  CAS  Google Scholar 

Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44(4):992–993. https://doi.org/10.1128/aem.44.4.992-993.1982

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mccarthy AJ, Cross T (1984) A taxonomic study of Thermomonospora and other monosporic actinomycetes. Microbiol-SGM 130:5–25. https://doi.org/10.1099/00221287-130-1-5

Article  Google Scholar 

Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52(Pt 3):1049–1070. https://doi.org/10.1099/00207713-52-3-1049

Article  PubMed  CAS  Google Scholar 

Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Microbial ID Inc., Newark

Google Scholar 

Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005. https://doi.org/10.1139/m96-128

Article  Google Scholar 

Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. Chemical methods in bacterial systematics. Wiley, London, pp 267–284

Google Scholar 

Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 663:199–202. https://doi.org/10.1016/0378-1097(90)90282-U

Article  Google Scholar 

Marmur J (1963) A procedure for the isolation of deoxyribonucleic acid from microorganisms. Method Enzymol 6(2):726–738. https://doi.org/10.1016/S0022-2836(61)80047-8

Article  CAS  Google Scholar 

Frank JA, Reich CI, Sharma S et al (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. https://doi.org/10.1128/AEM.02272-07

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98. https://doi.org/10.1021/bk-1999-0734.ch008

Article  CAS  Google Scholar 

Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882. https://doi.org/10.1093/NAR/25.24.4876

Article  PubMed  PubMed Central  CAS  Google Scholar 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  PubMed  CAS  Google Scholar 

Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

Article  PubMed  PubMed Central  CAS  Google Scholar 

Auch AF, von Jan M, Klenk HP et al (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134. https://doi.org/10.4056/sigs.531120

Article  PubMed  PubMed Central  Google Scholar 

Parks DH, Chuvochina M, Waite DW et al (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004. https://doi.org/10.1038/nbt.4229

Article  PubMed  CAS  Google Scholar 

Nguyen LT, Schmidt HA, von Haeseler A et al (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300

Article  PubMed  CAS  Google Scholar 

Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucl Acids Res 47(W1):W256–W259. https://doi.org/10.1093/nar/gkz239

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meier-Kolthoff JP,

Comments (0)

No login
gif
Back To Top