Screening, Gene Cloning and Expression of Cellulase-Producing Strain Bacillus subtilis Xh-16

De-Souza TSP, Kawaguti HY (2021) Cellulases, hemicellulases, and pectinases: applications in the food and beverage industry. Food Bioprocess Tech 14(8):1446–1477. https://doi.org/10.1007/s11947-021-02678-z

Article  CAS  Google Scholar 

Apte AA, Senger RS, Fong SS (2014) Designing novel cellulase systems through agent-based modeling and global sensitivity analysis. Bioengineered 5(4):243–253. https://doi.org/10.4161/bioe.29160

Article  PubMed  PubMed Central  Google Scholar 

Ahmed A, Bibi A (2018) Fungal cellulase; production and applications: minireview. Int J Health Life Sci 4(1):19–36. https://doi.org/10.20319/lijh-ls.2018.41.1936

Article  Google Scholar 

Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. British Microbiol Res J 3(3):235–258

Article  Google Scholar 

Brumm PJ, Hermanson S, Gowda K, Xie D, Mead DA (2015) Clostridium thermocellum Cel5L-cloning and characterization of a new, thermostable GH5 cellulase. Int J Biochem Res Rev 6(2):62. https://doi.org/10.9734/IJBCR-R/2015/15199

Article  CAS  Google Scholar 

Santos DA, Oliveira MM, Curvelo AAS, Fonseca LP, Porto ALM (2017) Hydrolysis of cellulose from sugarcane bagasse by cellulases from marine-derived fungi strains. Int Biodeter Biodegr 121:66–78. https://doi.org/10.1016/j.ibiod.2017.0-3.014

Article  CAS  Google Scholar 

Ma L, Aizhan R, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X (2020) Cloning and characterization of low-temperature adapted GH5-CBM3 endo-cellulase from Bacillus subtilis 1AJ3 and their application in the saccharification of switchgrass and coffee grounds. AMB Expre 10(1):1–11. https://doi.org/10.1186/s13568-020-00975-y

Article  CAS  Google Scholar 

Silano V, Barat Baviera JM, Bolognesi C et al (2019) Safety evaluation of the food enzyme cellulase from Trichoderma reesei (strain DP-Nzc36). EFSA J 17(10):e05839. https://doi.org/10.2903/j.efsa.2019.5839

Article  PubMed  PubMed Central  Google Scholar 

Ejaz U, Sohail M, Ghanemi A (2021) Cellulases: from bioactivity to a variety of industrial applications. Biomimetics 6(3):44. https://doi.org/10.3390/biomimetics-6030044

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424

Article  CAS  Google Scholar 

Hu Y, Kang G, Wang L, Gao M, Wang P, Yang D, Huang H (2021) Current status of mining, modification, and application of cellulases in bioactive substance extraction. Curr Issues Mol Biol 43(2):687–703. https://doi.org/10.3390/cimb-43020050

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhati N, Sharma AK (2021) Cost-effective cellulase production, improvement strategies, and future challenges. J Food Process Eng 44(2):13623. https://doi.org/10.1111/jfpe.13623

Article  CAS  Google Scholar 

Keshavarz B, Khalesi M (2016) Trichoderma reesei, a superior cellulase source for industrial applications. Biofuel 7(6):713–721. https://doi.org/10.1080/175-972-69.2016.1192444

Article  CAS  Google Scholar 

Patel AK, Singhania RR, Sim SJ, Pandey A (2019) Thermostable cellulases: current status and perspectives. Bioresour technol 279:385–392. https://doi.org/10.1016/j.biortech.2019.01.049

Article  PubMed  CAS  Google Scholar 

Ma L, Lu Y, Yan H, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X (2020) Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus. BMC Biotechnol 20(1):1–13. https://doi.org/10.1186/s12896-019-0593-8

Article  Google Scholar 

Robson LM, Chambliss GH (1984) Characterization of the cellulolytic activity of a Bacillus isolate. Appl Environ Microbiol 47(5):1039–1046. https://doi.org/10.1128/aem.47.5.1039-1046.1984

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maamar H, Valette O, Fierobe HP, Bélaich A, Belaich JP, Tardif C (2004) Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbiol 51(2):589–598. https://doi.org/10.1046/j.13652958.2003.03859.x

Article  PubMed  CAS  Google Scholar 

Kim BH, Wimpenny JWT (1981) Growth and cellulolytic activity of Cellulomonas flavigena. Can J Microbiol 27(12):1260–1266. https://doi.org/10.1139/m81-193

Article  Google Scholar 

Vadala BS, Deshpande S, Apte-Deshpande A (2021) Soluble expression of recombinant active cellulase in E. coli using B subtilis (natto strain) cellulase gene. J Genet Eng Biotechnol 19(1):1–7. https://doi.org/10.1186/s43141-020-00103-0

Article  Google Scholar 

Siu-Rodas Y, Calixto-Romo MA, Guillén-Navarro K, Sánchez JE, Zamora-Briseño JA, Amaya-Delgado L (2018) Bacillus subtilis with endocellulase and exocellulase activities isolated in the thermophilic phase from composting with coffee residues. Rev Argent Microbiol 50(3):234–243. https://doi.org/10.1016/j.ram.2017.08.005

Article  PubMed  Google Scholar 

Fatani S, Saito Y, Alarawi MS, Gojobori T, Mineta K (2021) Genome sequencing and identification of cellulase genes in Bacillus paralicheniformis strains from the red sea. BMC Microbiol 21(1):1–12. https://doi.org/10.1186/s12866-021-02316-w

Article  CAS  Google Scholar 

Dos-Santos YQ, De-Veras BO, De-Franca AFJ, Gorlach-Lira K, Velasques J, Migliolo L, Dos Santos EA (2018) A new salt-tolerant thermostable cellulase from a marine Bacillus sp. Strain J Microbiol Biotechnol 28(7):1078–1085. https://doi.org/10.4014/jmb.1802.02037

Article  PubMed  CAS  Google Scholar 

Amin FR, Khalid H, El-Mashad HM, Chen C, Liu G, Zhang R (2021) Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Sci Total Environ 763:143007. https://doi.org/10.1016/j.s-citotenv.2020.143007

Article  PubMed  CAS  Google Scholar 

Xiaoxi Z, Liyuan C, Jianxin T, Lijian X, Pei J, Wen L (2012) Screening and characterization of a heavy metal tolerance bacterium. Adv Mater Res 550:1540–1544. https://doi.org/10.4028/www.scientific.net/AMR.550-553.1540

Article  CAS  Google Scholar 

Gong C, Maun CM, Tsao GT (1981) Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus Monilia sp. Biotechnol Lett 3(2):77–82. https://doi.org/10.1007/BF00145114

Article  CAS  Google Scholar 

Li J, Zhang Y, Li J, Sun T, Tian C (2020) Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose. Biotechnol Biofuel 13(1):1–15. https://doi.org/10.1186/s13068-020-1661-y

Article  CAS  Google Scholar 

Li YH, Zhang XY, Zhang F, Peng L, Zhang D, Kondo A, Bai F, Zhao X (2018) Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnol Biofuel 11(1):1–14. https://doi.org/10.1186/s13068-018-1048-5

Article  CAS  Google Scholar 

Boraston AB, Kwan E, Chiu P, Warren RA, Kilburn DG (2003) Recognition and hydrolysis of noncrystalline cellulose. J Biol Chem 278(8):6120–6127. https://doi.org/10.1074/jbc.M209554200

Article  PubMed  CAS  Google Scholar 

Lee JP, Shin ES, Cho MY, Lee K, Kim H (2018) Roles of carbohydrate-binding module (CBM) of an endo-β-1,4-glucanase (Cel5L) from Bacillus sp. KD1014 in thermostability and small-substrate hydrolyzing activity. J Microbiol Biotechnol 28(12):2036–2045. https://doi.org/10.4014/jmb.1810.10001

Article  PubMed  CAS  Google Scholar 

Sun L, Cao J, Liu Y, Wang J, Guo P, Wang Z (2017) Gene cloning and expression of cellulase of Bacillus amyloliquefaciens isolated from the cecum of goose. Anim Biotechnol 28(1):74–82. https://doi.org/10.1080/10495398.20-16.1205594

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif