Sobel JD (2006) The emergence of non-albicans Candida species as causes of invasive candidiasis and candidemia. Curr Infect Dis Rep 8(6):427–433. https://doi.org/10.1007/s11908-006-0016-6
Calderone R, Odds FC, Boekhout T (2009) Candida albicans: fundamental research on an opportunistic human pathogen. FEMS Yeast Res 9(7):971–972. https://doi.org/10.1111/j.1567-1364.2009.00585.x
Article CAS PubMed Google Scholar
Ksiezopolska E, Gabaldón T (2018) Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes (Basel). https://doi.org/10.3390/genes9090461
Ostrosky-Zeichner L, Sobel JD (2023) Candidiasis. In: Hospenthal DR, Rinaldi MG, Walsh TJ (eds) Diagnosis and treatment of fungal infections. Springer, Cham, pp 151–166
Rodrigues ME, Silva S, Azeredo J, Henriques M (2016) Novel strategies to fight Candida species infection. Crit Rev Microbiol 42(4):594–606. https://doi.org/10.3109/1040841x.2014.974500
Article CAS PubMed Google Scholar
Cavalheiro M, Teixeira MC (2018) Candida biofilms: Threats, challenges, and promising strategies. Front Med (Lausanne) 5:28. https://doi.org/10.3389/fmed.2018.00028
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP (2021) Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 47(1):91–111. https://doi.org/10.1080/1040841x.2020.1843400
Article CAS PubMed PubMed Central Google Scholar
Taff HT, Mitchell KF, Edward JA, Andes DR (2013) Mechanisms of Candida biofilm drug resistance. Future Microbiol 8(10):1325–1337. https://doi.org/10.2217/fmb.13.101
Article CAS PubMed Google Scholar
Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318. https://doi.org/10.1038/sj.onc.1210599
Article CAS PubMed Google Scholar
Vernarecci S, Tosi F, Filetici P (2010) Tuning acetylated chromatin with HAT inhibitors: a novel tool for therapy. Epigenetics 5(2):105–111. https://doi.org/10.4161/epi.5.2.10942
Article CAS PubMed Google Scholar
Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S (2020) Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol 15:1075–1090. https://doi.org/10.2217/fmb-2019-0343
Article CAS PubMed Google Scholar
Mai A, Altucci L (2009) Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 41(1):199–213. https://doi.org/10.1016/j.biocel.2008.08.020
Article CAS PubMed Google Scholar
Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. https://doi.org/10.3390/ijms18071414
Article PubMed PubMed Central Google Scholar
Peserico A, Simone C (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011:371832. https://doi.org/10.1155/2011/371832
Article CAS PubMed Google Scholar
Lee CY, Grant PA (2019) Chapter 1–1 - Role of histone acetylation and acetyltransferases in gene regulation. In: McCullough SD, Dolinoy DC (eds) Toxicoepigenetics. Academic Press, Cambridge, pp 3–305
Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8(4):284–295. https://doi.org/10.1038/nrm2145
Article CAS PubMed Google Scholar
Manzo F, Tambaro FP, Mai A, Altucci L (2009) Histone acetyltransferase inhibitors and preclinical studies. Expert Opin Ther Pat 19(6):761–774. https://doi.org/10.1517/13543770902895727
Article CAS PubMed Google Scholar
Mehnert JM, Kelly WK (2007) Histone deacetylase inhibitors: biology and mechanism of action. Cancer J 13(1):23–29. https://doi.org/10.1097/PPO.0b013e31803c72ba
Article CAS PubMed Google Scholar
Kuchler K, Jenull S, Shivarathri R, Chauhan N (2016) Fungal KATs/KDACs: a new highway to better antifungal drugs? PLoS Pathog 12(11):e1005938. https://doi.org/10.1371/journal.ppat.1005938
Article CAS PubMed PubMed Central Google Scholar
Lopes da Rosa J, Boyartchuk VL, Zhu LJ, Kaufman PD (2010) Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci USA 107(4):1594–1599. https://doi.org/10.1073/pnas.0912427107
Article PubMed PubMed Central Google Scholar
Wurtele H, Tsao S, Lépine G, Mullick A, Tremblay J, Drogaris P, Lee EH, Thibault P, Verreault A, Raymond M (2010) Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 16(7):774–780. https://doi.org/10.1038/nm.2175
Article CAS PubMed PubMed Central Google Scholar
Chang P, Fan X, Chen J (2015) Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet Biol 81:132–141. https://doi.org/10.1016/j.fgb.2015.01.011
Article CAS PubMed Google Scholar
Retanal C, Ball B, Geddes-McAlister J (2021) Post-translational modifications drive success and failure of fungal-host interactions. J Fungi (Basel). https://doi.org/10.3390/jof7020124
Lee Y, Robbins N, Cowen LE (2023) Molecular mechanisms governing antifungal drug resistance. NPJ Antimicrob Resist 1(1):5. https://doi.org/10.1038/s44259-023-00007-2
Article PubMed PubMed Central Google Scholar
Yu S, Paderu P, Lee A, Eirekat S, Healey K, Chen L, Perlin DS, Zhao Y (2022) Histone acetylation regulator Gcn5 mediates drug resistance and virulence of Candida glabrata. Microbiol Spectr 10(3):e0096322. https://doi.org/10.1128/spectrum.00963-22
Article CAS PubMed Google Scholar
Li K, Mocciaro G, Griffin JL, Zhang N (2023) The Saccharomyces cerevisiae acetyltransferase Gcn5 exerts antagonistic pleiotropic effects on chronological ageing. Aging (Albany NY) 15(20):10915–10937
Qasim MN, Valle Arevalo A, Nobile CJ, Hernday AD (2021) The roles of chromatin accessibility in regulating the Candida albicans white-opaque phenotypic switch. J Fungi (Basel). https://doi.org/10.3390/jof7010037
Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD (2016) Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol 7:2173. https://doi.org/10.3389/fmicb.2016.02173
Audia JE, Campbell RM (2016) Histone modifications and cancer. Cold Spring Harb Perspect Biol 8(4):a019521. https://doi.org/10.1101/cshperspect.a019521
Article PubMed PubMed Central Google Scholar
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP (2023) PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 22(1):138. https://doi.org/10.1186/s12943-023-01827-6
Comments (0)