board WHOcte. Soft tissue and bone tumours. 5th ed. World Health Organization classification of tumours. World Health Organization International Agency for Research on Cancer; 2020.
Sanfilippo R, Miceli R, Grosso F, Fiore M, Puma E, Pennacchioli E, et al. Myxofibrosarcoma: prognostic factors and survival in a series of patients treated at a single institution. Ann Surg Oncol. 2011;18(3):720–5. https://doi.org/10.1245/s10434-010-1341-4.
Wakely PE Jr. Cytopathology of myxofibrosarcoma: a study of 66 cases and literature review. J Am Soc Cytopathol. 2021;10(3):300–9. https://doi.org/10.1016/j.jasc.2020.09.004.
Dewan V, Darbyshire A, Sumathi V, Jeys L, Grimer R. Prognostic and survival factors in myxofibrosarcomas. Sarcoma. 2012;2012: 830879. https://doi.org/10.1155/2012/830879.
Article PubMed PubMed Central Google Scholar
Willems SM, Debiec-Rychter M, Szuhai K, Hogendoorn PC, Sciot R. Local recurrence of myxofibrosarcoma is associated with increase in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol. 2006;19(3):407–16. https://doi.org/10.1038/modpathol.3800550.
Ghazala CG, Agni NR, Ragbir M, Dildey P, Lee D, Rankin KS, et al. Myxofibrosarcoma of the extremity and trunk: a multidisciplinary approach leads to good local rates of LOCAL control. Bone Joint J. 2016;98-b(12):1682–8. https://doi.org/10.1302/0301-620x.98b12.37568.
Article CAS PubMed Google Scholar
van der Horst CAJ, Bongers SLM, Versleijen-Jonkers YMH, Ho VKY, Braam PM, Flucke UE, et al. Overall survival of patients with Myxofibrosarcomas: An epidemiological study. Cancers. 2022;14(5):1102.
Article PubMed PubMed Central Google Scholar
Teurneau H, Engellau J, Ghanei I, Vult von Steyern F, Styring E. High recurrence rate of myxofibrosarcoma: the effect of radiotherapy is not clear. Sarcoma. 2019;2019(1):8517371. https://doi.org/10.1155/2019/8517371.
Article CAS PubMed PubMed Central Google Scholar
Takeuchi Y, Yoshida K, Halik A, Kunitz A, Suzuki H, Kakiuchi N, et al. The landscape of genetic aberrations in myxofibrosarcoma. Int J Cancer. 2022;151(4):565–77. https://doi.org/10.1002/ijc.34051.
Article CAS PubMed Google Scholar
Heitzer E, Sunitsch S, Gilg MM, Lohberger B, Rinner B, Kashofer K, et al. Expanded molecular profiling of myxofibrosarcoma reveals potentially actionable targets. Mod Pathol. 2017;30(12):1698–709. https://doi.org/10.1038/modpathol.2017.94.
Article CAS PubMed Google Scholar
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.
Article CAS PubMed PubMed Central Google Scholar
Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013. https://doi.org/10.1093/nar/gks1111.
Article PubMed PubMed Central Google Scholar
Kondo T. Current status and future outlook for patient-derived cancer models from a rare cancer research perspective. Cancer Sci. 2021;112(3):953–61. https://doi.org/10.1111/cas.14669.
Article CAS PubMed PubMed Central Google Scholar
Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018;29(2):25–38. https://doi.org/10.7171/jbt.18-2902-002.
Article PubMed PubMed Central Google Scholar
Kito F, Oyama R, Sakumoto M, Shiozawa K, Qiao Z, Toki S, et al. Establishment and characterization of a novel cell line, NCC-MFS1-C1, derived from a patient with myxofibrosarcoma. Hum Cell. 2019;32(2):214–22. https://doi.org/10.1007/s13577-018-00233-1.
Article CAS PubMed Google Scholar
Noguchi R, Yoshimatsu Y, Ono T, Sei A, Hirabayashi K, Ozawa I, et al. Establishment and characterization of NCC-MFS2-C1: a novel patient-derived cancer cell line of myxofibrosarcoma. Hum Cell. 2021;34(1):246–53. https://doi.org/10.1007/s13577-020-00420-z.
Article CAS PubMed Google Scholar
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Sei A, et al. Establishment and characterization of NCC-MFS3-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell. 2021;34(4):1266–73. https://doi.org/10.1007/s13577-021-00548-6.
Article CAS PubMed Google Scholar
Yoshimatsu Y, Noguchi R, Tsuchiya R, Sin Y, Ono T, Sugaya J, et al. Establishment and characterization of NCC-MFS4-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell. 2021;34(6):1911–8. https://doi.org/10.1007/s13577-021-00589-x.
Article CAS PubMed Google Scholar
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Akiyama T, et al. Establishment and characterization of NCC-MFS5-C1: A novel patient-derived cell line of myxofibrosarcoma. Cells. 2022;11(2):207. https://doi.org/10.3390/cells11020207.
Article CAS PubMed PubMed Central Google Scholar
Yoshimatsu Y, Noguchi R, Sin Y, Tsuchiya R, Ono T, Akiyama T, et al. Establishment and characterization of NCC-MFS6-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell. 2022;35(6):1993–2001. https://doi.org/10.1007/s13577-022-00749-7.
Article CAS PubMed Google Scholar
Ogura K, Hosoda F, Arai Y, Nakamura H, Hama N, Totoki Y, et al. Integrated genetic and epigenetic analysis of myxofibrosarcoma. Nat Commun. 2018;9(1):2765. https://doi.org/10.1038/s41467-018-03891-9.
Article CAS PubMed PubMed Central Google Scholar
Yamashita A, Suehara Y, Hayashi T, Takagi T, Kubota D, Sasa K, et al. Molecular and clinicopathological analysis revealed an immuno-checkpoint inhibitor as a potential therapeutic target in a subset of high-grade myxofibrosarcoma. Virchows Arch. 2022;481(4):1–17. https://doi.org/10.1007/s00428-022-03358-9.
Article CAS PubMed Google Scholar
Sambri A, De Paolis M, Spinnato P, Donati DM, Bianchi G. The biology of myxofibrosarcoma: state of the art and future perspectives. Oncol Res Treat. 2020;43(6):314–22. https://doi.org/10.1159/000507334.
Article CAS PubMed Google Scholar
Li GZ, Okada T, Kim YM, Agaram NP, Sanchez-Vega F, Shen Y, et al. Rb and p53-deficient myxofibrosarcoma and undifferentiated pleomorphic sarcoma require Skp2 for survival. Cancer Res. 2020;80(12):2461–71. https://doi.org/10.1158/0008-5472.Can-19-1269.
Article CAS PubMed PubMed Central Google Scholar
Nakano K, Ae K, Matsumoto S, Takahashi S. The VAC regimen for adult rhabdomyosarcoma: Differences between adolescent/young adult and older patients. Asia Pac J Clin Oncol. 2020;16(2):e47–52. https://doi.org/10.1111/ajco.13279.
Özkan A, Bayram İ, Sezgin G, Mirioğlu A, Küpeli S. Efficacy of replacing actinomycin-D with carboplatin in Ewing sarcoma consolidation treatment: Single-center experience. J Bone Oncol. 2022;35: 100435. https://doi.org/10.1016/j.jbo.2022.100435.
Article PubMed PubMed Central Google Scholar
Sharma A, Preuss CV. Bortezomib. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC; 2024.
Cvek B. Proteasome inhibitors. Prog Mol Biol Transl Sci. 2012;109:161–226. https://doi.org/10.1016/b978-0-12-397863-9.00005-5.
Article CAS PubMed Google Scholar
Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW, et al. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther. 2010;10(7):997–1008. https://doi.org/10.1586/era.10.88.
Comments (0)