Establishment and characterization of two novel patient-derived cell lines from myxofibrosarcoma: NCC-MFS7-C1 and NCC-MFS8-C1

board WHOcte. Soft tissue and bone tumours. 5th ed. World Health Organization classification of tumours. World Health Organization International Agency for Research on Cancer; 2020.

Sanfilippo R, Miceli R, Grosso F, Fiore M, Puma E, Pennacchioli E, et al. Myxofibrosarcoma: prognostic factors and survival in a series of patients treated at a single institution. Ann Surg Oncol. 2011;18(3):720–5. https://doi.org/10.1245/s10434-010-1341-4.

Article  PubMed  Google Scholar 

Wakely PE Jr. Cytopathology of myxofibrosarcoma: a study of 66 cases and literature review. J Am Soc Cytopathol. 2021;10(3):300–9. https://doi.org/10.1016/j.jasc.2020.09.004.

Article  PubMed  Google Scholar 

Dewan V, Darbyshire A, Sumathi V, Jeys L, Grimer R. Prognostic and survival factors in myxofibrosarcomas. Sarcoma. 2012;2012: 830879. https://doi.org/10.1155/2012/830879.

Article  PubMed  PubMed Central  Google Scholar 

Willems SM, Debiec-Rychter M, Szuhai K, Hogendoorn PC, Sciot R. Local recurrence of myxofibrosarcoma is associated with increase in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol. 2006;19(3):407–16. https://doi.org/10.1038/modpathol.3800550.

Article  PubMed  Google Scholar 

Ghazala CG, Agni NR, Ragbir M, Dildey P, Lee D, Rankin KS, et al. Myxofibrosarcoma of the extremity and trunk: a multidisciplinary approach leads to good local rates of LOCAL control. Bone Joint J. 2016;98-b(12):1682–8. https://doi.org/10.1302/0301-620x.98b12.37568.

Article  CAS  PubMed  Google Scholar 

van der Horst CAJ, Bongers SLM, Versleijen-Jonkers YMH, Ho VKY, Braam PM, Flucke UE, et al. Overall survival of patients with Myxofibrosarcomas: An epidemiological study. Cancers. 2022;14(5):1102.

Article  PubMed  PubMed Central  Google Scholar 

Teurneau H, Engellau J, Ghanei I, Vult von Steyern F, Styring E. High recurrence rate of myxofibrosarcoma: the effect of radiotherapy is not clear. Sarcoma. 2019;2019(1):8517371. https://doi.org/10.1155/2019/8517371.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeuchi Y, Yoshida K, Halik A, Kunitz A, Suzuki H, Kakiuchi N, et al. The landscape of genetic aberrations in myxofibrosarcoma. Int J Cancer. 2022;151(4):565–77. https://doi.org/10.1002/ijc.34051.

Article  CAS  PubMed  Google Scholar 

Heitzer E, Sunitsch S, Gilg MM, Lohberger B, Rinner B, Kashofer K, et al. Expanded molecular profiling of myxofibrosarcoma reveals potentially actionable targets. Mod Pathol. 2017;30(12):1698–709. https://doi.org/10.1038/modpathol.2017.94.

Article  CAS  PubMed  Google Scholar 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013. https://doi.org/10.1093/nar/gks1111.

Article  PubMed  PubMed Central  Google Scholar 

Kondo T. Current status and future outlook for patient-derived cancer models from a rare cancer research perspective. Cancer Sci. 2021;112(3):953–61. https://doi.org/10.1111/cas.14669.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018;29(2):25–38. https://doi.org/10.7171/jbt.18-2902-002.

Article  PubMed  PubMed Central  Google Scholar 

Kito F, Oyama R, Sakumoto M, Shiozawa K, Qiao Z, Toki S, et al. Establishment and characterization of a novel cell line, NCC-MFS1-C1, derived from a patient with myxofibrosarcoma. Hum Cell. 2019;32(2):214–22. https://doi.org/10.1007/s13577-018-00233-1.

Article  CAS  PubMed  Google Scholar 

Noguchi R, Yoshimatsu Y, Ono T, Sei A, Hirabayashi K, Ozawa I, et al. Establishment and characterization of NCC-MFS2-C1: a novel patient-derived cancer cell line of myxofibrosarcoma. Hum Cell. 2021;34(1):246–53. https://doi.org/10.1007/s13577-020-00420-z.

Article  CAS  PubMed  Google Scholar 

Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Sei A, et al. Establishment and characterization of NCC-MFS3-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell. 2021;34(4):1266–73. https://doi.org/10.1007/s13577-021-00548-6.

Article  CAS  PubMed  Google Scholar 

Yoshimatsu Y, Noguchi R, Tsuchiya R, Sin Y, Ono T, Sugaya J, et al. Establishment and characterization of NCC-MFS4-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell. 2021;34(6):1911–8. https://doi.org/10.1007/s13577-021-00589-x.

Article  CAS  PubMed  Google Scholar 

Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Akiyama T, et al. Establishment and characterization of NCC-MFS5-C1: A novel patient-derived cell line of myxofibrosarcoma. Cells. 2022;11(2):207. https://doi.org/10.3390/cells11020207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshimatsu Y, Noguchi R, Sin Y, Tsuchiya R, Ono T, Akiyama T, et al. Establishment and characterization of NCC-MFS6-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell. 2022;35(6):1993–2001. https://doi.org/10.1007/s13577-022-00749-7.

Article  CAS  PubMed  Google Scholar 

Ogura K, Hosoda F, Arai Y, Nakamura H, Hama N, Totoki Y, et al. Integrated genetic and epigenetic analysis of myxofibrosarcoma. Nat Commun. 2018;9(1):2765. https://doi.org/10.1038/s41467-018-03891-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamashita A, Suehara Y, Hayashi T, Takagi T, Kubota D, Sasa K, et al. Molecular and clinicopathological analysis revealed an immuno-checkpoint inhibitor as a potential therapeutic target in a subset of high-grade myxofibrosarcoma. Virchows Arch. 2022;481(4):1–17. https://doi.org/10.1007/s00428-022-03358-9.

Article  CAS  PubMed  Google Scholar 

Sambri A, De Paolis M, Spinnato P, Donati DM, Bianchi G. The biology of myxofibrosarcoma: state of the art and future perspectives. Oncol Res Treat. 2020;43(6):314–22. https://doi.org/10.1159/000507334.

Article  CAS  PubMed  Google Scholar 

Li GZ, Okada T, Kim YM, Agaram NP, Sanchez-Vega F, Shen Y, et al. Rb and p53-deficient myxofibrosarcoma and undifferentiated pleomorphic sarcoma require Skp2 for survival. Cancer Res. 2020;80(12):2461–71. https://doi.org/10.1158/0008-5472.Can-19-1269.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakano K, Ae K, Matsumoto S, Takahashi S. The VAC regimen for adult rhabdomyosarcoma: Differences between adolescent/young adult and older patients. Asia Pac J Clin Oncol. 2020;16(2):e47–52. https://doi.org/10.1111/ajco.13279.

Article  PubMed  Google Scholar 

Özkan A, Bayram İ, Sezgin G, Mirioğlu A, Küpeli S. Efficacy of replacing actinomycin-D with carboplatin in Ewing sarcoma consolidation treatment: Single-center experience. J Bone Oncol. 2022;35: 100435. https://doi.org/10.1016/j.jbo.2022.100435.

Article  PubMed  PubMed Central  Google Scholar 

Sharma A, Preuss CV. Bortezomib. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC; 2024.

Cvek B. Proteasome inhibitors. Prog Mol Biol Transl Sci. 2012;109:161–226. https://doi.org/10.1016/b978-0-12-397863-9.00005-5.

Article  CAS  PubMed  Google Scholar 

Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW, et al. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther. 2010;10(7):997–1008. https://doi.org/10.1586/era.10.88.

Article  CAS  PubMed 

Comments (0)

No login
gif