Cyclic tensile stress promotes osteogenic differentiation via upregulation of Piezo1 in human dental follicle stem cells

Yang B, Chen G, Li J, et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix—based scaffold. Biomaterials. 2012;33(8):2449–61. https://doi.org/10.1016/j.biomaterials.2011.11.074.

Article  CAS  PubMed  Google Scholar 

Zeng L, He H, Sun M, et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther. 2022;13(1):486. https://doi.org/10.1186/s13287-022-03140-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi R, Lyu P, Song Y, et al. Function of dental follicle progenitor/stem cells and their potential in regenerative medicine: from mechanisms to applications. Biomolecules. 2021;11(7):997. https://doi.org/10.3390/biom11070997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao Q, Zhang Y, Qi X, et al. AFF4 regulates osteogenic differentiation of human dental follicle cells. Int J Oral Sci. 2020;12(1):20. https://doi.org/10.1038/s41368-020-0083-9.

Article  PubMed  PubMed Central  Google Scholar 

Um S, Lee JH, Seo BM. TGF-β2 downregulates osteogenesis under inflammatory conditions in dental follicle stem cells. Int J Oral Sci. 2018;10(3):29. https://doi.org/10.1038/s41368-018-0028-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X, Ma Y, Guo W, et al. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics. 2019;9(9):2694–711. https://doi.org/10.7150/thno.31801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider SE, Scott AK, Seelbinder B, et al. Dynamic biophysical responses of neuronal cell nuclei and cytoskeletal structure following high impulse loading. Acta Biomater. 2023;163:339–50. https://doi.org/10.1016/j.actbio.2022.07.002.

Article  PubMed  Google Scholar 

Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron. 2015;87(6):1162–79. https://doi.org/10.1016/j.neuron.2015.08.032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin J, Kuebler WM. Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys. 2010;56(1):1–18. https://doi.org/10.1007/s12013-009-9067-2.

Article  CAS  PubMed  Google Scholar 

Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73. https://doi.org/10.1038/nrm2597.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez S, Vlad MD, López J, et al. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 2016;42:341–50. https://doi.org/10.1016/j.actbio.2016.06.032.

Article  CAS  PubMed  Google Scholar 

Charoenpanich A, Wall ME, Tucker CJ, et al. Cyclic tensile strain enhances osteogenesis and angiogenesis in mesenchymal stem cells from osteoporotic donors. Tissue Eng Part A. 2014;20(1–2):67–78. https://doi.org/10.1089/ten.TEA.2013.0006.

Article  CAS  PubMed  Google Scholar 

Carroll SF, Buckley CT, Kelly DJ. Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Front Bioeng Biotechnol. 2017;5:73. https://doi.org/10.3389/fbioe.2017.00073.

Article  PubMed  PubMed Central  Google Scholar 

Wu X, Li Y, Cao Z, et al. Mechanism of cyclic tensile stress in osteogenic differentiation of human periodontal ligament stem cells. Calcif Tissue Int. 2021;108(5):640–53. https://doi.org/10.1007/s00223-020-00789-x.

Article  CAS  PubMed  Google Scholar 

Yang X, Cai X, Wang J, et al. Mechanical stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells. Cell Prolif. 2012;45(2):158–66. https://doi.org/10.1111/j.1365-2184.2011.00802.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnadóttir J, Chalfie M. Eukaryotic mechanosensitive channels. Annu Rev Biophys. 2010;39:111–37. https://doi.org/10.1146/annurev.biophys.37.032807.125836.

Article  CAS  PubMed  Google Scholar 

Syeda R, Xu J, Dubin AE, et al. Chemical activation of the mechanotransduction channel Piezo1. Elife. 2015;4: e07369. https://doi.org/10.7554/eLife.07369.

Article  PubMed  PubMed Central  Google Scholar 

Miyazaki A, Sugimoto A, Yoshizaki K, et al. Coordination of WNT signaling and ciliogenesis during odontogenesis by piezo type mechanosensitive ion channel component 1. Sci Rep. 2019;9(1):14762. https://doi.org/10.1038/s41598-019-51381-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasaki F, Hayashi M, Mouri Y, et al. Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in osteocytes. Biochem Biophys Res Commun. 2020;521(3):806–13. https://doi.org/10.1016/j.bbrc.2019.10.174.

Article  CAS  PubMed  Google Scholar 

Zhou T, Gao B, Fan Y, et al. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. Elife. 2020;9: e52779. https://doi.org/10.7554/eLife.52779.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun W, Chi S, Li Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. Elife. 2019;8: e47454. https://doi.org/10.7554/eLife.47454.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Q, Cooper PR, Walmsley AD, et al. Role of piezo channels in ultrasound-stimulated dental stem cells. J Endod. 2017;43(7):1130–6. https://doi.org/10.1016/j.joen.2017.02.022.

Article  PubMed  Google Scholar 

Jiang Y, Guan Y, Lan Y, et al. Mechanosensitive Piezo1 in periodontal ligament cells promotes alveolar bone remodeling during orthodontic tooth movement. Front Physiol. 2021;12: 767136. https://doi.org/10.3389/fphys.2021.767136.

Article  PubMed  PubMed Central  Google Scholar 

Xing Y, Yang B, He Y, et al. Effects of mechanosensitive ion channel Piezo1 on proliferation and osteogenic differentiation of human dental follicle cells. Ann Anat. 2022;239: 151847. https://doi.org/10.1016/j.aanat.2021.151847.

Article  PubMed  Google Scholar 

Wu Y, Jing Z, Deng D, et al. Dkk-1-TNF-α crosstalk regulates MC3T3E1 pre-osteoblast proliferation and differentiation under mechanical stress through the ERK signaling pathway. Mol Cell Biochem. 2023. https://doi.org/10.1007/s11010-022-04645-4.

Article  PubMed  PubMed Central  Google Scholar 

Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806. https://doi.org/10.1177/0022034509340867.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo L, Li J, Qiao X, et al. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One. 2013;8(4): e62332. https://doi.org/10.1371/journal.pone.0062332.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif