Pathophysiology, molecular mechanisms, and genetics of atrial fibrillation

Schnabel RB, Yin X, PhilimonGona, et al. Fifty-year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the community. Lancet. 2015;386(9989):154–62. https://doi.org/10.1016/S0140-6736(14)61774-8.

Article  PubMed  PubMed Central  Google Scholar 

Mensah GA, Fuster V, Murray CJL, et al. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol. 2023;82(25):2350–473. https://doi.org/10.1016/j.jacc.2023.11.007.

Article  PubMed  PubMed Central  Google Scholar 

An R, Liu J, Zhang J, et al. Risk factors and SCN5A-H558R polymorphism for atrial fibrillation in Tibetans living at different altitudes. Medicine (Baltimore). 2022;101(46): e31778. https://doi.org/10.1097/MD.0000000000031778.

Article  CAS  PubMed  Google Scholar 

Lin Y, Qin J, Shen Y, et al. Identification of rare heterozygous linkage R965C–R1309H mutations in the pore-forming region of SCN5A gene associated with complex arrhythmia. Molec Gen & Gen Med. 2021;9(5): e1613. https://doi.org/10.1002/mgg3.1613.

Article  CAS  Google Scholar 

Zaveri S, Srivastava U, Qu YS, Chahine M, Boutjdir M. Pathophysiology of Cav13 L-type calcium channels in the heart. Front Physiol. 2023;14:1144069.

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Ye Q, Bai S, et al. Inhibiting microRNA-155 attenuates atrial fibrillation by targeting CACNA1C. J Mol Cell Cardiol. 2021;155:58–65. https://doi.org/10.1016/j.yjmcc.2021.02.008.

Article  CAS  PubMed  Google Scholar 

Herraiz-Martínez A, Tarifa C, Jiménez-Sábado V, et al. Influence of sex on intracellular calcium homoeostasis in patients with atrial fibrillation. Cardiovasc Res. 2022;118(4):1033–45. https://doi.org/10.1093/cvr/cvab127.

Article  CAS  PubMed  Google Scholar 

Grammatika Pavlidou N, Dobrev S, Beneke K, et al. Phosphodiesterase 8 governs cAMP/PKA-dependent reduction of L-type calcium current in human atrial fibrillation: a novel arrhythmogenic mechanism. Eur Heart J. 2023;44(27):2483–94. https://doi.org/10.1093/eurheartj/ehad086.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mesirca P, Fedorov VV, Hund TJ, et al. Pharmacologic approach to sinoatrial node dysfunction. Annu Rev Pharmacol Toxicol. 2021;61(1):757–78. https://doi.org/10.1146/annurev-pharmtox-031120-115815.

Article  CAS  PubMed  Google Scholar 

Sun XLi, Yuan Jf, Jin T, et al. Physical and functional interaction of Snapin with Cav1.3 calcium channel impacts channel protein trafficking in atrial myocytes. Cellular Signal. 2017;30:118–29.

Article  CAS  Google Scholar 

Jeong S, Rhee JS, Lee JH. Snapin specifically up-regulates Cav1.3 Ca2+ channel variant with a long carboxyl terminus. IJMS. 2021;22(20):11268. https://doi.org/10.3390/ijms222011268.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiedmann F, Beyersdorf C, Zhou XB, et al. Treatment of atrial fibrillation with doxapram: TASK-1 potassium channel inhibition as a novel pharmacological strategy. Cardiovasc Res. 2022;118(7):1728–41. https://doi.org/10.1093/cvr/cvab177.

Article  CAS  PubMed  Google Scholar 

Wiedmann F, Kraft M, Kallenberger S, et al. MicroRNAs regulate TASK-1 and are linked to myocardial dilatation in atrial fibrillation. JAHA. 2022;11(7): e023472. https://doi.org/10.1161/JAHA.121.023472.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poulet C, Künzel S, Büttner E, Lindner D, Westermann D, Ravens U. Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiol Rep. 2016;4(2): e12681. https://doi.org/10.14814/phy2.12681.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakob D, Klesen A, Darkow E, et al. Heterogeneity and remodeling of ion currents in cultured right atrial fibroblasts from patients with sinus rhythm or atrial fibrillation. Front Physiol. 2021;12: 673891. https://doi.org/10.3389/fphys.2021.673891.

Article  PubMed  PubMed Central  Google Scholar 

Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol. 2022;13: 968393. https://doi.org/10.3389/fphys.2022.968393.

Article  PubMed  PubMed Central  Google Scholar 

Andriulė I, Pangonytė D, Gwanyanya A, Karčiauskas D, Mubagwa K, Mačianskienė R. Detection of TRPM6 and TRPM7 proteins in normal and diseased cardiac atrial tissue and isolated cardiomyocytes. Int J Mol Sci. 2022;23(23):14860. https://doi.org/10.3390/ijms232314860.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harada M, Luo X, Qi XY, et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation. 2012;126(17):2051–64. https://doi.org/10.1161/CIRCULATIONAHA.112.121830.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andriulė I, Pangonytė D, Gwanyanya A, Karčiauskas D, Mubagwa K, Mačianskienė R. Detection of TRPM6 and TRPM7 proteins in normal and diseased cardiac atrial tissue and isolated cardiomyocytes. IJMS. 2022;23(23):14860. https://doi.org/10.3390/ijms232314860.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gussak G, Pfenniger A, Wren L, et al. Region-specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation. JCI Insight. 2019;4(20):e130532.

Article  PubMed  PubMed Central  Google Scholar 

Arora R, Ulphani JS, Villuendas R, et al. Neural substrate for atrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am J Physiol-Heart and Circulatory Physiol. 2008;294(1):H134–44. https://doi.org/10.1152/ajpheart.00732.2007.

Article  CAS  Google Scholar 

Yoo S, Rottmann M, Ng J, et al. Regions of highly recurrent electrogram morphology with low cycle length reflect substrate for atrial fibrillation. JACC Basic Transl Sci. 2022;8(1):68–84. https://doi.org/10.1016/j.jacbts.2022.07.011.

Article  PubMed  PubMed Central  Google Scholar 

Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500. https://doi.org/10.1161/CIRCRESAHA.114.303772.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Oliveira ÍM, da Silva EL, de Martins Y, O Rocha HAL Scanavacca MI Gutierrez PS. A Remodelação do Sistema Nervoso Autônomo Cardíaco pode Desempenhar um Papel na Fibrilação Atrial: Um Estudo do Sistema Nervoso Autônomo e Receptores Miocárdicos. Arq Bras Cardiol. 2021;117(5):999–1007.

PubMed  PubMed Central  Google Scholar 

Chakraborty P, Farhat K, Po SS, Armoundas AA, Stavrakis S. Autonomic nervous system and cardiac metabolism. Clinical Electrophysiol. 2023;9(7):1196–206.

Article  Google Scholar 

Scott L Jr, Fender AC, Saljic A, et al. NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmias. Cardiovasc Res. 2021;117(7):1746–59. https://doi.org/10.1093/cvr/cvab024.

Article  CAS  PubMed  Google Scholar 

Xing Y, Yan L, Li X, et al. The relationship between atrial fibrillation and NLRP3 inflammasome: a gut microbiota perspective. Front Immunol. 2023;14:1273524. https://doi.org/10.3389/fimmu.2023.1273524.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma M, Zhi H, Yang S, Yu EYW, Wang L. Body mass index and the risk of atrial fibrillation: a mendelian randomization study. Nutrients. 2022;14(9):1878. https://doi.org/10.3390/nu14091878.

Article 

Comments (0)

No login
gif