Schnabel RB, Yin X, PhilimonGona, et al. Fifty-year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the community. Lancet. 2015;386(9989):154–62. https://doi.org/10.1016/S0140-6736(14)61774-8.
Article PubMed PubMed Central Google Scholar
Mensah GA, Fuster V, Murray CJL, et al. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol. 2023;82(25):2350–473. https://doi.org/10.1016/j.jacc.2023.11.007.
Article PubMed PubMed Central Google Scholar
An R, Liu J, Zhang J, et al. Risk factors and SCN5A-H558R polymorphism for atrial fibrillation in Tibetans living at different altitudes. Medicine (Baltimore). 2022;101(46): e31778. https://doi.org/10.1097/MD.0000000000031778.
Article CAS PubMed Google Scholar
Lin Y, Qin J, Shen Y, et al. Identification of rare heterozygous linkage R965C–R1309H mutations in the pore-forming region of SCN5A gene associated with complex arrhythmia. Molec Gen & Gen Med. 2021;9(5): e1613. https://doi.org/10.1002/mgg3.1613.
Zaveri S, Srivastava U, Qu YS, Chahine M, Boutjdir M. Pathophysiology of Cav13 L-type calcium channels in the heart. Front Physiol. 2023;14:1144069.
Article PubMed PubMed Central Google Scholar
Wang J, Ye Q, Bai S, et al. Inhibiting microRNA-155 attenuates atrial fibrillation by targeting CACNA1C. J Mol Cell Cardiol. 2021;155:58–65. https://doi.org/10.1016/j.yjmcc.2021.02.008.
Article CAS PubMed Google Scholar
Herraiz-Martínez A, Tarifa C, Jiménez-Sábado V, et al. Influence of sex on intracellular calcium homoeostasis in patients with atrial fibrillation. Cardiovasc Res. 2022;118(4):1033–45. https://doi.org/10.1093/cvr/cvab127.
Article CAS PubMed Google Scholar
Grammatika Pavlidou N, Dobrev S, Beneke K, et al. Phosphodiesterase 8 governs cAMP/PKA-dependent reduction of L-type calcium current in human atrial fibrillation: a novel arrhythmogenic mechanism. Eur Heart J. 2023;44(27):2483–94. https://doi.org/10.1093/eurheartj/ehad086.
Article CAS PubMed PubMed Central Google Scholar
Mesirca P, Fedorov VV, Hund TJ, et al. Pharmacologic approach to sinoatrial node dysfunction. Annu Rev Pharmacol Toxicol. 2021;61(1):757–78. https://doi.org/10.1146/annurev-pharmtox-031120-115815.
Article CAS PubMed Google Scholar
Sun XLi, Yuan Jf, Jin T, et al. Physical and functional interaction of Snapin with Cav1.3 calcium channel impacts channel protein trafficking in atrial myocytes. Cellular Signal. 2017;30:118–29.
Jeong S, Rhee JS, Lee JH. Snapin specifically up-regulates Cav1.3 Ca2+ channel variant with a long carboxyl terminus. IJMS. 2021;22(20):11268. https://doi.org/10.3390/ijms222011268.
Article CAS PubMed PubMed Central Google Scholar
Wiedmann F, Beyersdorf C, Zhou XB, et al. Treatment of atrial fibrillation with doxapram: TASK-1 potassium channel inhibition as a novel pharmacological strategy. Cardiovasc Res. 2022;118(7):1728–41. https://doi.org/10.1093/cvr/cvab177.
Article CAS PubMed Google Scholar
Wiedmann F, Kraft M, Kallenberger S, et al. MicroRNAs regulate TASK-1 and are linked to myocardial dilatation in atrial fibrillation. JAHA. 2022;11(7): e023472. https://doi.org/10.1161/JAHA.121.023472.
Article CAS PubMed PubMed Central Google Scholar
Poulet C, Künzel S, Büttner E, Lindner D, Westermann D, Ravens U. Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiol Rep. 2016;4(2): e12681. https://doi.org/10.14814/phy2.12681.
Article CAS PubMed PubMed Central Google Scholar
Jakob D, Klesen A, Darkow E, et al. Heterogeneity and remodeling of ion currents in cultured right atrial fibroblasts from patients with sinus rhythm or atrial fibrillation. Front Physiol. 2021;12: 673891. https://doi.org/10.3389/fphys.2021.673891.
Article PubMed PubMed Central Google Scholar
Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol. 2022;13: 968393. https://doi.org/10.3389/fphys.2022.968393.
Article PubMed PubMed Central Google Scholar
Andriulė I, Pangonytė D, Gwanyanya A, Karčiauskas D, Mubagwa K, Mačianskienė R. Detection of TRPM6 and TRPM7 proteins in normal and diseased cardiac atrial tissue and isolated cardiomyocytes. Int J Mol Sci. 2022;23(23):14860. https://doi.org/10.3390/ijms232314860.
Article CAS PubMed PubMed Central Google Scholar
Harada M, Luo X, Qi XY, et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation. 2012;126(17):2051–64. https://doi.org/10.1161/CIRCULATIONAHA.112.121830.
Article CAS PubMed PubMed Central Google Scholar
Andriulė I, Pangonytė D, Gwanyanya A, Karčiauskas D, Mubagwa K, Mačianskienė R. Detection of TRPM6 and TRPM7 proteins in normal and diseased cardiac atrial tissue and isolated cardiomyocytes. IJMS. 2022;23(23):14860. https://doi.org/10.3390/ijms232314860.
Article CAS PubMed PubMed Central Google Scholar
Gussak G, Pfenniger A, Wren L, et al. Region-specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation. JCI Insight. 2019;4(20):e130532.
Article PubMed PubMed Central Google Scholar
Arora R, Ulphani JS, Villuendas R, et al. Neural substrate for atrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am J Physiol-Heart and Circulatory Physiol. 2008;294(1):H134–44. https://doi.org/10.1152/ajpheart.00732.2007.
Yoo S, Rottmann M, Ng J, et al. Regions of highly recurrent electrogram morphology with low cycle length reflect substrate for atrial fibrillation. JACC Basic Transl Sci. 2022;8(1):68–84. https://doi.org/10.1016/j.jacbts.2022.07.011.
Article PubMed PubMed Central Google Scholar
Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500. https://doi.org/10.1161/CIRCRESAHA.114.303772.
Article CAS PubMed PubMed Central Google Scholar
de Oliveira ÍM, da Silva EL, de Martins Y, O Rocha HAL Scanavacca MI Gutierrez PS. A Remodelação do Sistema Nervoso Autônomo Cardíaco pode Desempenhar um Papel na Fibrilação Atrial: Um Estudo do Sistema Nervoso Autônomo e Receptores Miocárdicos. Arq Bras Cardiol. 2021;117(5):999–1007.
PubMed PubMed Central Google Scholar
Chakraborty P, Farhat K, Po SS, Armoundas AA, Stavrakis S. Autonomic nervous system and cardiac metabolism. Clinical Electrophysiol. 2023;9(7):1196–206.
Scott L Jr, Fender AC, Saljic A, et al. NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmias. Cardiovasc Res. 2021;117(7):1746–59. https://doi.org/10.1093/cvr/cvab024.
Article CAS PubMed Google Scholar
Xing Y, Yan L, Li X, et al. The relationship between atrial fibrillation and NLRP3 inflammasome: a gut microbiota perspective. Front Immunol. 2023;14:1273524. https://doi.org/10.3389/fimmu.2023.1273524.
Article CAS PubMed PubMed Central Google Scholar
Ma M, Zhi H, Yang S, Yu EYW, Wang L. Body mass index and the risk of atrial fibrillation: a mendelian randomization study. Nutrients. 2022;14(9):1878. https://doi.org/10.3390/nu14091878.
Comments (0)