Development of an RNA virus-based episomal vector with artificial aptazyme for gene silencing

Auslander S, Ketzer P, Hartig JS (2010) A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol Biosyst 6(5):807–814. https://doi.org/10.1039/b923076a

Article  CAS  PubMed  Google Scholar 

Banyard AC, Mansfield KL, Wu G, Selden D, Thorne L, Birch C, Koraka P, Osterhaus A, Fooks AR (2019) Re-evaluating the effect of Favipiravir treatment on rabies virus infection. Vaccine 37(33):4686–4693. https://doi.org/10.1016/j.vaccine.2017.10.109

Article  CAS  PubMed  Google Scholar 

Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P, D’Angelo A, Naldini L (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110(13):4144–4152. https://doi.org/10.1182/blood-2007-03-078493

Article  CAS  PubMed  Google Scholar 

Bulaklak K, Gersbach CA (2020) The once and future gene therapy. Nat Commun 11(1):5820. https://doi.org/10.1038/s41467-020-19505-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bulcha JT, Wang Y, Ma H, Tai PWL, Gao GP (2021) Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy 6(1):ARTN53. https://doi.org/10.1038/s41392-021-00487-6

Article  CAS  Google Scholar 

Chang AL, Wolf JJ, Smolke CD (2012) Synthetic RNA switches as a tool for temporal and spatial control over gene expression. Curr Opin Biotechnol 23(5):679–688. https://doi.org/10.1016/j.copbio.2012.01.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cubitt B, Oldstone C, de la Torre JC (1994) Sequence and genome organization of Borna disease virus. J Virol 68(3):1382–1396. https://doi.org/10.1128/JVI.68.3.1382-1396.1994

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daito T, Fujino K, Honda T, Matsumoto Y, Watanabe Y, Tomonaga K (2011) A novel Borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. J Virol 85(23):12170–12178. https://doi.org/10.1128/jvi.05554-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehrhardt A, Haase R, Schepers A, Deutsch MJ, Lipps HJ, Baiker A (2008) Episomal vectors for gene therapy. Curr Gene Ther 8(3):147–161. https://doi.org/10.2174/156652308784746440

Article  CAS  PubMed  Google Scholar 

Fujino K, Yamamoto Y, Daito T, Makino A, Honda T, Tomonaga K (2017) Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes. Microbiol Immunol 61(9):380–386. https://doi.org/10.1111/1348-0421.12505

Article  CAS  PubMed  Google Scholar 

Heilmann E, Kimpel J, Hofer B, Rossler A, Blaas I, Egerer L, Nolden T, Urbiola C, Krausslich HG, Wollmann G, von Laer D (2021) Chemogenetic ON and OFF switches for RNA virus replication. Nat Commun 12(1):1362. https://doi.org/10.1038/s41467-021-21630-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirai Y, Hirano Y, Matsuda A, Hiraoka Y, Honda T, Tomonaga K (2016) Borna disease virus assembles porous cage-like viral factories in the nucleus. J Biol Chem 291(50):25789–25798. https://doi.org/10.1074/jbc.M116.746396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirai Y, Tomonaga K, Horie M (2021) Borna disease virus phosphoprotein triggers the organization of viral inclusion bodies by liquid-liquid phase separation. Int J Biol Macromol 192:55–63. https://doi.org/10.1016/j.ijbiomac.2021.09.153

Article  CAS  PubMed  Google Scholar 

Ikeda Y, Makino A, Matchett WE, Holditch SJ, Lu B, Dietz AB, Tomonaga K (2016) A novel intranuclear RNA vector system for long-term stem cell modification. Gene Ther 23(3):256–262. https://doi.org/10.1038/gt.2015.108

Article  CAS  PubMed  Google Scholar 

Jordan I, Briese T, Averett DR, Lipkin WI (1999) Inhibition of Borna disease virus replication by ribavirin. J Virol 73(9):7903–7906. https://doi.org/10.1128/JVI.73.9.7903-7906.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ketzer P, Kaufmann JK, Engelhardt S, Bossow S, von Kalle C, Hartig JS, Ungerechts G, Nettelbeck DM (2014) Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc Natl Acad Sci U S A 111(5):E554–E562. https://doi.org/10.1073/pnas.1318563111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobori S, Takahashi K, Yokobayashi Y (2017) Deep Sequencing analysis of aptazyme variants based on a pistol ribozyme. ACS Synth Biol 6(7):1283–1288. https://doi.org/10.1021/acssynbio.7b00057

Article  CAS  PubMed  Google Scholar 

Komatsu Y, Tomonaga K (2020) Reverse genetics approaches of Borna disease virus: applications in development of viral vectors and preventive vaccines. Curr Opin Virol 44:42–48. https://doi.org/10.1016/j.coviro.2020.05.011

Article  CAS  PubMed  Google Scholar 

Komatsu Y, Takeuchi D, Tokunaga T, Sakurai H, Makino A, Honda T, Ikeda Y, Tomonaga K (2019) RNA virus-based episomal vector with a fail-safe switch facilitating efficient genetic modification and differentiation of iPSCs. Mol Ther Methods Clin Dev 14:47–55. https://doi.org/10.1016/j.omtm.2019.05.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komatsu Y, Tanaka C, Komorizono R, Tomonaga K (2020) In vivo biodistribution analysis of transmission competent and defective RNA virus-based episomal vector. Sci Rep 10(1):5890. https://doi.org/10.1038/s41598-020-62630-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanznaster D, Dal-Cim T, Piermartiri TC, Tasca CI (2016) Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis 7(5):657–679. https://doi.org/10.14336/AD.2016.0208

Article  PubMed  PubMed Central  Google Scholar 

Link KH, Breaker RR (2009) Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther 16(10):1189–1201. https://doi.org/10.1038/gt.2009.81

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marmorstein R, Carey M, Ptashne M, Harrison SC (1992) DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356(6368):408–414. https://doi.org/10.1038/356408a0

Article  CAS  PubMed  Google Scholar 

Matrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18(3):477–490. https://doi.org/10.1038/mt.2009.319

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto Y, Hayashi Y, Omori H, Honda T, Daito T, Horie M, Ikuta K, Fujino K, Nakamura S, Schneider U, Chase G, Yoshimori T, Schwemmle M, Tomonaga K (2012) Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection. Cell Host Microbe 11(5):492–503. https://doi.org/10.1016/j.chom.2012.04.009

Article  CAS  PubMed  Google Scholar 

Milone MC, O’Doherty U (2018) Clinical use of lentiviral vectors. Leukemia 32(7):1529–1541. https://doi.org/10.1038/s41375-018-0106-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif