Ahmed MZ, Alqahtani AS, Nasr FA, Tabish Rehman M, Alsufyani SA, AlAjmi MF, Alhuzani MR (2023) Detection and isolation of aflatoxin producing Aspergillus sp. in chewing and smokeless tobacco by microbial and molecular methods. Saudi J Biol Sci:103704. https://doi.org/10.1016/j.sjbs.2023.103704
Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325):629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867
Article CAS PubMed PubMed Central Google Scholar
Bose T, Haque MM, Reddy C, Mande SS (2015) COGNIZER: A framework for functional annotation of metagenomic datasets. PLoS One 10(11):e0142102. https://doi.org/10.1371/journal.pone.0142102
Article CAS PubMed PubMed Central Google Scholar
Carlsson S, Andersson T, Araghi M, Galanti R, Lager A, Lundberg M, Nilsson P, Norberg M, Pedersen NL, Trolle-Lagerros Y, Magnusson C (2017) Smokeless tobacco (Snus) is associated with an increased risk of type 2 diabetes: results from five pooled cohorts. J Intern Med 281(4):398–406. https://doi.org/10.1111/joim.12592
Article CAS PubMed Google Scholar
Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15(3):799–821. https://doi.org/10.1038/s41596-019-0264-1
Article CAS PubMed Google Scholar
Chopyk J, Chattopadhyay S, Kulkarni P, Smyth EM, Hittle LE, Paulson JN, Pop M, Buehler SS, Clark PI, Mongodin EF, Sapkota AR (2017) Temporal variations in cigarette tobacco bacterial community composition and tobacco-specific nitrosamine content are influenced by brand and storage conditions. Front Microbiol 8:358. https://doi.org/10.3389/fmicb.2017.00358
Article PubMed PubMed Central Google Scholar
CORESTA (2021a) CORESTA Recommended Method No. 75. Determination of tobacco specific nitrosamines in mainstream smoke by LC-MS/MS. https://www.coresta.org/determination-tobacco-specific-nitrosamines-tobacco-and-tobacco-products-lc-msms-29195.html
CORESTA (2021b) CORESTA Recommended Method No. 93. Determination of selected metals in tobacco and tobacco products by ICP-MS. https://www.coresta.org/determination-selected-metals-tobacco-products-icp-ms-33784.html
Dhaware D, Deshpande A, Khandekar RN, Chowgule R (2009) Determination of toxic metals in Indian smokeless tobacco products. Sci World J 9:1140–1147. https://doi.org/10.1100/tsw.2009.132
Di Giacomo M, Paolino M, Silvestro D, Vigliotta G, Imperi F, Visca P, Alifano P, Parente D (2007) Microbial community structure and dynamics of dark fire-cured tobacco fermentation. Appl Environ Microbiol 73(3):825–837. https://doi.org/10.1128/aem.02378-06
Fang P, Konyali D, Fischer E, Mayer RP, Huang J, Elena AX, Orzechowski GH, Tony-Odigie A, Kneis D, Dalpke A, Krebs P, Li B, Berendonk TU, Klümper U (2023) Cigarette smoking promotes the spread of antimicrobial resistance in the human lung and the environment. bioRxiv:2023–2008. https://doi.org/10.1101/2023.08.14.553211
Fisher MT, Bennett CB, Hayes A, Kargalioglu Y, Knox BL, Xu D, Muhammad-Kah R, Gaworski CL (2012) Sources of and technical approaches for the abatement of tobacco specific nitrosamine formation in moist smokeless tobacco products. Food Chem Toxicol 50(3):942–948. https://doi.org/10.1016/j.fct.2011.11.035
Article CAS PubMed Google Scholar
GATS-2 (2017) Global Adult Tobacco Survey-2 Factsheet India 2016-17. https://mohfw.gov.in/sites/default/files/GATS-2FactSheet.pdf
González PJ, Correia C, Moura I, Brondino CD, Moura JJ (2006) Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100(5-6):1015–1023. https://doi.org/10.1016/j.jinorgbio.2005.11.024
Article CAS PubMed Google Scholar
Gupta B, Johnson NW (2014) Systematic review and meta-analysis of association of smokeless tobacco and of betel quid without tobacco with incidence of oral cancer in South Asia and the Pacific. PLoS One 9(11):e113385. https://doi.org/10.1371/journal.pone.0113385
Article CAS PubMed PubMed Central Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11(1):119. https://doi.org/10.1186/1471-2105-11-119
IARC (2012) IARC monograph on the evaluation of carcinogenic risk of chemicals to humans Volume 100E. Personal habits and indoor combustions: A review of human carcinogens.
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205. https://doi.org/10.1093/nar/gkt1076
Article CAS PubMed Google Scholar
Kaur G, Das DK, Singh S, Khan J, Sajid M, Bashir H, Aqdas M, Negi S, Gowthaman U, Agrewala JN (2019a) Tuberculosis vaccine: past experiences and future prospects. In: Hasnain SE, Ehtesham NZ, Grover S (eds) Mycobacterium tuberculosis: molecular infection biology, pathogenesis, diagnostics and new interventions. Springer Singapore, Singapore, pp 375–405
Kaur J, Sharma A, Kumar A, Bhartiya D, Sinha DN, Kumari S, Gupta R, Mehrotra R, Singh H (2019b) SLTChemDB: A database of chemical compounds present in smokeless tobacco products. Sci Rep 9(1):7142. https://doi.org/10.1038/s41598-019-43559-y
Article CAS PubMed PubMed Central Google Scholar
Khurana M, Sharma D, Khandelwal PD (2000) Lipid profile in smokers and tobacco chewers--a comparative study. J Assoc Physicians India 48(9):895–897
Kumar A, Bhartiya D, Kaur J, Kumari S, Singh H, Saraf D, Sinha DN, Mehrotra R (2018) Regulation of toxic contents of smokeless tobacco products. Indian J Med Res 148(1):14–24. https://doi.org/10.4103/ijmr.IJMR_2025_17
Article CAS PubMed PubMed Central Google Scholar
Lacoma A, Edwards AM, Young BC, Domínguez J, Prat C, Laabei M (2019) Cigarette smoke exposure redirects Staphylococcus aureus to a virulence profile associated with persistent infection. Sci Rep 9(1):10798. https://doi.org/10.1038/s41598-019-47258-6
Article CAS PubMed PubMed Central Google Scholar
Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinform 31(10):1674–1676. https://doi.org/10.1093/bioinformatics/btv033
Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7:11257. https://doi.org/10.1038/ncomms11257
Article CAS PubMed PubMed Central Google Scholar
Monika S, Dineshkumar T, Priyadharini S, Niveditha T, Rajkumar K (2020) Smokeless tobacco products (STPs) harbour bacterial populations with potential for oral carcinogenicity. Asian Pac J Cancer Prev 21(3):815–824. https://doi.org/10.31557/APJCP.2020.21.3.815
Article CAS PubMed PubMed Central Google Scholar
Nasrin S, Chen G, Watson CJW, Lazarus P (2020) Comparison of tobacco-specific nitrosamine levels in smokeless tobacco products: high levels in products from Bangladesh. PLoS One 15(5):e0233111. https://doi.org/10.1371/journal.pone.0233111
Article CAS PubMed PubMed Central Google Scholar
Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Environ Microbiol 75(4):889–897. https://doi.org/10.1007/s00253-007-0879-y
Rivera AJ, Tyx RE (2021) Microbiology of the American smokeless tobacco. Appl Microbiol Biotechnol 105:4843–4853. https://doi.org/10.1007/s00253-021-11382-z
Article CAS PubMed PubMed Central Google Scholar
Rivera AJ, Tyx RE, Keong LM, Stanfill SB, Watson CH (2020) Microbial communities and gene contributions in smokeless tobacco products. Appl Microbiol Biotechnol 104(24):10613–10629. https://doi.org/10.1007/s00253-020-10999-w
Article CAS PubMed PubMed Central Google Scholar
Sajid M, Srivastava S, Kumar A, Kumar A, Singh H, Bharadwaj M (2021) Bacteriome of moist smokeless tobacco products consumed in India with emphasis on the predictive functional potential. Front Microbiol 12(3908):784841. https://doi.org/10.3389/fmicb.2021.784841
Comments (0)