The, W., Report on cardiovascular health and diseases in China 2022: an updated summary, Biomed. Environ. Sci., 2023, vol. 36, no. 8, p. 669—701. https://doi.org/10.3967/bes2023.106
Amarenco, P., Lavallée, P.C., Labreuche, J., et al., Prevalence of coronary atherosclerosis in patients with cerebral infarction, Stroke, 2011, vol. 42, no. 1, pp. 22—29. https://doi.org/10.1161/strokeaha.110.584086
Jin, L., Zhou, J., Shi, W., et al., Effects of six types of aspirin combination medications for treatment of acute cerebral infarction in China: a network meta-analysis, J. Clin. Pharm. Ther., 2019, vol. 44, no. 1, pp. 91—101. https://doi.org/10.1111/jcpt.12763
Article CAS PubMed Google Scholar
Sheng-Shou, H., Report on cardiovascular health and diseases in China 2021: an updated summary, J. Geriatr. Cardiol., 2023, vol. 20, pp. 1—32. https://doi.org/10.26599/1671-5411.2023.06.001
Reicher-Reiss, H., Jonas, M., Tanne, D., et al., Prognostic significance of cerebrovascular disease in 11 526 chronic coronary artery disease patients: Bezafibrate Infarction Prevention (BIP) study group, Am. J. Cardiol., 1998, vol. 82, no. 12, pp. 1532—1535. https://doi.org/10.1016/s0002-9149(98)00701-2
Article CAS PubMed Google Scholar
Hoshide, S., Kario, K., Mitsuhashi, T., et al., Different patterns of silent cerebral infarct in patients with coronary artery disease or hypertension, Am. J. Hypertens., 2001, vol. 14, no. 6, pp. 509—515. https://doi.org/10.1016/s0895-7061(00)01293-0
Article CAS PubMed Google Scholar
Kozdag, G., Ciftci, E., Ural, D., et al., Silent cerebral infarction in chronic heart failure: ischemic and nonischemic dilated cardiomyopathy, Vasc. Health Risk Manage., 2008, vol. 4, no. 2, pp. 463—469. https://doi.org/10.2147/vhrm.s2166
Siachos, T., Vanbakel, A., Feldman, D.S., et al., Silent strokes in patients with heart failure, J. Card. Failure, 2005, vol. 11, no. 7, pp. 485—489. https://doi.org/10.1016/j.cardfail.2005.04.004
Xu, J., Li, M., Gao, Y., et al., Using Mendelian randomization as the cornerstone for causal inference in epidemiology, Environ. Sci. Pollut. Res. Int., 2022, vol. 29, no. 4, pp. 5827—5839. https://doi.org/10.1007/s11356-021-15939-3
Wang, L. and Zhang, Z., Mendelian randomization approach used for causal inferences, Zhonghua Liu xing bing xue Za zhi, 2017, vol. 38, no. 4, pp. 547—552. https://doi.org/10.3760/cma.j.issn.0254-6450.2017.04.027
Article CAS PubMed Google Scholar
Lawlor, D.A., Harbord, R.M., Sterne, J.A., et al., Mendelian randomization: using genes as instruments for making causal inferences in epidemiology, Stat. Med., 2008, vol. 27, no. 8, pp. 1133—1163. https://doi.org/10.1002/sim.3034
Burgess, S., Scott, R.A., Timpson, N.J., et al., Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors, Eur. J. Epidemiol., 2015, vol. 30, pp. 543—552. https://doi.org/10.1007/s10654-015-0011-z
Article PubMed PubMed Central Google Scholar
Burgess, S., Small, D.S. and Thompson, S.G., A review of instrumental variable estimators for Mendelian randomization, Stat. Methods Med. Res., 2017, vol. 26, no. 5, pp. 2333—2355. https://doi.org/10.1177/0962280215597579
Zheng, J., Baird, D., Borges, M.-C., et al., Recent developments in Mendelian randomization studies, Curr. Epidemiol. Rep., 2017, vol. 4, pp. 330—345. https://doi.org/10.1007/s40471-017-0128-6
Article PubMed PubMed Central Google Scholar
Brion, M.-J.A., Shakhbazov, K., and Visscher, P.M., Calculating statistical power in Mendelian randomization studies, Int. J. Epidemiol., 2013, vol. 42, no. 5, pp. 1497—1501. https://doi.org/10.1093/ije/dyt179
Gibran, H., Jie, Z., Benjamin, E., et al., The MR-Base platform supports systematic causal inference across the human phenome, eLife, 2018, vol. 7, p. e34408. https://doi.org/10.7554/eLife.34408
Bowden, J., Davey Smith, G., Haycock, P.C., and Burgess, S., Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator, Genet. Epidemiol., 2016, vol. 40, no. 4, pp. 304—314. https://doi.org/10.1002/gepi.21965
Article PubMed PubMed Central Google Scholar
Bowden, J., Davey Smith, G., and Burgess, S., Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression, Int. J. Epidemiol., 2015, vol. 44, no. 2, pp. 512—525. https://doi.org/10.1093/ije/dyv080
Article PubMed PubMed Central Google Scholar
Burgess, S., Butterworth, A., and Thompson, S.G., Mendelian randomization analysis with multiple genetic variants using summarized data, Genet. Epidemiol., 2013, vol. 37, no. 7, pp. 658—665. https://doi.org/10.1002/gepi.21758
Article PubMed PubMed Central Google Scholar
Verbanck, M., Chen, C.-Y., Neale, B., and Do, R., Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases, Nat. Genet., 2018, vol. 50, no. 5, pp. 693—698. https://doi.org/10.1038/s41588-018-0099-7
Article CAS PubMed PubMed Central Google Scholar
Bowden, J., Spiller, W., Del Greco, M.F., et al., Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression, Int. J. Epidemiol., 2018, vol. 47, no. 4, pp. 1264—1278. https://doi.org/10.1093/ije/dyy101
Article PubMed PubMed Central Google Scholar
Leithe, M.E., Margorien, R.D., Hermiller, J.B., et al., Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure, Circulation, 1984, vol. 69, no. 1, pp. 57—64. https://doi.org/10.1161/01.cir.69.1.57
Article CAS PubMed Google Scholar
Zelis, R. and Flaim, S.F., Alterations in vasomotor tone in congestive heart failure, Prog. Cardiovasc. Dis., 1982, vol. 24, no. 6, pp. 437—459. https://doi.org/10.1016/0033-0620(82)90012-3
Article CAS PubMed Google Scholar
Zelis, R., Mason, D.T., and Braunwald, E., A comparison of the effects of vasodilator stimuli on peripheral resistance vessels in normal subjects and in patients with congestive heart failure, J. Clin. Invest., 1968, vol. 47, no. 4, pp. 960—970. https://doi.org/10.1172/jci105788
Article CAS PubMed PubMed Central Google Scholar
Sullivan, M.J., Knight, J., Higginbotham, M., and Cobb, F., Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure: muscle blood flow is reduced with maintenance of arterial perfusion pressure, Circulation, 1989, vol. 80, no. 4, pp. 769—781. https://doi.org/10.1161/01.cir.80.4.769
Article CAS PubMed Google Scholar
Alves, T.C., Rays, J., Fráguas, R., Jr., et al., Localized cerebral blood flow reductions in patients with heart failure: a study using 99mTc-HMPAO SPECT, J. Neuroimaging, 2005, vol. 15, no. 2, pp. 150—156. https://doi.org/10.1177/1051228404272880
Sun, Y., Xu, Y., and Geng, L., Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction, Exp. Ther. Med., 2015, vol. 10, no. 1, pp. 133—138. https://doi.org/10.3892/etm.2015.2462
Article CAS PubMed PubMed Central Google Scholar
Marcucci, R., Gori, A., Giannotti, F., et al., Markers of hypercoagulability and inflammation predict mortality in patients with heart failure, J. Thromb. Haemostasis, 2006, vol. 4, no. 5, pp. 1017—1022. https://doi.org/10.1111/j.1538-7836.2006.01916.x
Prandoni, P., Lensing, A.W., Cogo, A., et al., The long-term clinical course of acute deep venous thrombosis, Ann. Intern. Med., 1996, vol. 125, no. 1, pp. 1—7. https://doi.org/10.7326/0003-4819-125-1-199607010-00001
Article CAS PubMed Google Scholar
Thompson, R.C., Allam, A.H., Lombardi, G.P., et al., Atherosclerosis across 4000 years of human history: the Horus study of four ancient populations, Lancet
Comments (0)