Effects of Azithromycin on Blood Inflammatory Gene Expression and Cytokine Production in Sarcoidosis

Baughman RP, Field S, Costabel U, Crystal RG, Culver DA, Drent M et al (2016) Sarcoidosis in America. analysis based on health care use. Ann Am Thorac Soc 13(8):1244–1252

Article  PubMed  Google Scholar 

Thillai M, Atkins CP, Crawshaw A, Hart SP, Ho LP, Kouranos V et al (2021) BTS clinical statement on pulmonary sarcoidosis. Thorax 76(1):4–20. https://doi.org/10.1136/thoraxjnl-2019-214348

Article  PubMed  Google Scholar 

Robert PB, Dominique V, Peter K, Alexander GM, Wim AW, Athol W et al (2021) ERS clinical practice guidelines on treatment of sarcoidosis. Eur Respir J. https://doi.org/10.1183/13993003.04079-2020

Article  PubMed  Google Scholar 

Baughman RP, Iannuzzi M (2003) Tumour necrosis factor in sarcoidosis and its potential for targeted therapy. BioDrugs 17(6):425–431. https://doi.org/10.2165/00063030-200317060-00005

Article  CAS  PubMed  Google Scholar 

Sahashi K, Ina Y, Takada K, Sato T, Yamamoto M, Morishita M (1994) Significance of interleukin 6 in patients with sarcoidosis. Chest 106(1):156–160. https://doi.org/10.1378/chest.106.1.156

Article  CAS  PubMed  Google Scholar 

Grutters JC, Sato H, Pantelidis P, Ruven HJ, McGrath DS, Wells AU et al (2003) Analysis of IL6 and IL1A gene polymorphisms in UK and dutch patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 20(1):20–27

PubMed  Google Scholar 

Linke M, Pham HT, Katholnig K, Schnoller T, Miller A, Demel F et al (2017) Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol 18(3):293–302. https://doi.org/10.1038/ni.3655

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pollock J, Chalmers JD (2021) The immunomodulatory effects of macrolide antibiotics in respiratory disease. Pulm Pharmacol Ther 71:102095. https://doi.org/10.1016/j.pupt.2021.102095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosnar M, Kelnerić Z, Munić V, Eraković V, Parnham MJ (2005) Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrob Agents Chemother 49(6):2372–2377. https://doi.org/10.1128/aac.49.6.2372-2377.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fietta A, Merlini C, Gialdroni GG (1997) Requirements for intracellular accumulation and release of clarithromycin and azithromycin by human phagocytes. J Chemother 9(1):23–31. https://doi.org/10.1179/joc.1997.9.1.23

Article  CAS  PubMed  Google Scholar 

Wildfeuer A, Laufen H, Zimmermann T (1996) Uptake of azithromycin by various cells and its intracellular activity under in vivo conditions. Antimicrob Agents Chemother 40(1):75–79. https://doi.org/10.1128/aac.40.1.75

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haydar D, Cory TJ, Birket SE, Murphy BS, Pennypacker KR, Sinai AP et al (2019) Azithromycin polarizes macrophages to an M2 phenotype via Inhibition of the STAT1 and NF-κB signaling pathways. J Immunol 203(4):1021–1030. https://doi.org/10.4049/jimmunol.1801228

Article  CAS  PubMed  Google Scholar 

Ratzinger F, Haslacher H, Poeppl W, Hoermann G, Kovarik JJ, Jutz S et al (2014) Azithromycin suppresses CD4(+) T-cell activation by direct modulation of mTOR activity. Sci Rep 4:7438. https://doi.org/10.1038/srep07438

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraser SD, Thackray-Nocera S, Shepherd M, Flockton R, Wright C, Sheedy W et al (2020) Azithromycin for sarcoidosis cough: an open-label exploratory clinical trial. ERJ open research 6(4):00534–02020. https://doi.org/10.1183/23120541.00534-2020

Article  PubMed  PubMed Central  Google Scholar 

Koth LL, Solberg OD, Peng JC, Bhakta NR, Nguyen CP, Woodruff PG (2011) Sarcoidosis blood transcriptome reflects lung inflammation and overlaps with tuberculosis. Am J Respir Crit Care Med 184(10):1153–1163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloom CI, Graham CM, Berry MP, Rozakeas F, Redford PS, Wang Y et al (2013) Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. PLoS ONE 8(8):e70630. https://doi.org/10.1371/journal.pone.0070630

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maertzdorf J, Weiner J 3rd, Mollenkopf HJ, Bauer T, Prasse A, Muller-Quernheim J et al (2012) Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A 109(20):7853–7858

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garman L, Pelikan RC, Rasmussen A, Lareau CA, Savoy KA, Deshmukh US et al (2020) Single cell transcriptomics implicate novel monocyte and T cell immune dysregulation in sarcoidosis. Front Immunol 11:567342. https://doi.org/10.3389/fimmu.2020.567342

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshioka K, Sato H, Kawasaki T, Ishii D, Imamoto T, Abe M et al (2022) Transcriptome analysis of peripheral blood mononuclear cells in pulmonary sarcoidosis. Front Med (Lausanne) 9:822094. https://doi.org/10.3389/fmed.2022.822094

Article  PubMed  Google Scholar 

Ascoli C, Schott CA, Huang Y, Turturice BA, Wang W, Ecanow N et al (2022) Altered transcription factor targeting is associated with differential peripheral blood mononuclear cell proportions in sarcoidosis. Front Immunol 13:848759. https://doi.org/10.3389/fimmu.2022.848759

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khassawneh B, Zhu C, Barkes B, Vestal B, Shrock S, Gillespie M et al (2022) Autoantibody profile in sarcoidosis, analysis from the GRADS sarcoidosis cohort. PLoS ONE 17(10):e0274381. https://doi.org/10.1371/journal.pone.0274381

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith D, Du Rand I, Addy CL, Collyns T, Hart SP, Mitchelmore PJ et al (2020) British thoracic society guideline for the use of long-term macrolides in adults with respiratory disease. Thorax 75(5):370–404. https://doi.org/10.1136/thoraxjnl-2019-213929

Article  PubMed  Google Scholar 

Fraser SD, Sadofsky LR, Kaye PM, Hart SP (2016) Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis. Sci Rep 6:38689. https://doi.org/10.1038/srep38689

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vrančić M, Banjanac M, Nujić K, Bosnar M, Murati T, Munić V et al (2012) Azithromycin distinctively modulates classical activation of human monocytes in vitro. Br J Pharmacol 165(5):1348–1360. https://doi.org/10.1111/j.1476-5381.2011.01576.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwanaga N, Nakamura S, Oshima K, Kajihara T, Takazono T, Miyazaki T et al (2015) Macrolides promote CCL2-mediated macrophage recruitment and clearance of nasopharyngeal pneumococcal colonization in mice. J Infect Dis 212(7):1150–1159. https://doi.org/10.1093/infdis/jiv157

Article  CAS  PubMed  Google Scholar 

Gschwandtner M, Derler R, Midwood KS (2019) More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front Immunol 10:2759. https://doi.org/10.3389/fimmu.2019.02759

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spyridaki A, Raftogiannis M, Antonopoulou A, Tsaganos T, Routsi C, Baziaka F et al (2012) Effect of clarithromycin in inflammatory markers of patients with ventilator-associated pneumonia and sepsis caused by Gram-negative bacteria: results from a randomized clinical study. Antimicrob Agents Chemother 56(7):3819–3825. https://doi.org/10.1128/aac.05798-11

Article  CAS 

Comments (0)

No login
gif