Ye M, Feng H, Hu J, Yu Q, Liu S. Managing tomato bacterial wilt by suppressing Ralstonia solanacearum population in soil and enhancing host resistance through fungus-derived furoic acid compound. Front Plant Sci. 2022;13:1064797.
Article PubMed PubMed Central Google Scholar
Wamani AO, Muthomi JW, Mutitu E, Waceke WJ. Efficacy of microbial antagonists in the management of bacterial wilt of field-grown tomato. J Nat Pestic Res. 2023;6:100051.
Khan RAA, Alam SS, Najeeb S, Ali A, Ahmad A, Shakoor A, et al. Mitigating Cd and bacterial wilt stress in tomato plants through trico-synthesized silicon nanoparticles and Trichoderma metabolites. Environ Pollut. 2023;333:122041.
Gowtham HG, Murali M, Shilpa N, Amruthesh KN, Gafur A, Antonius S, et al. Harnessing abiotic elicitors to bolster plant’s resistance against bacterial pathogens. Plant Stress. 2024;11:100371.
Yadav M, Dwibedi V, Sharma S, George N. Biogenic silica nanoparticles from agro-waste: Properties, mechanism of extraction and applications in environmental sustainability. J Environ Chem Eng. 2022;10:108550.
Yuliar, Asi Nion Y, Toyota K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 2015;30:1–11.
Ijaz M, Khan F, Ahmed T, Noman M, Zulfiqar F, Rizwan M, et al. Nanobiotechnology to advance stress resilience in plants: current opportunities and challenges. Mater Today Bio. 2023;22:100759.
Article PubMed PubMed Central Google Scholar
Iravani S. Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Crit Rev Microbiol. 2023;49:598–610.
Ahmad B, Khan MMA, Jaleel H, Shabbir A, Sadiq Y, Uddin M. Silicon Nanoparticles mediated increase in glandular trichomes and regulation of photosynthetic and quality attributes in mentha piperita L. J Plant Growth Regul. 2020;39:346–57.
Bilal M, Xu C, Cao L, Zhao P, Cao C, Li F et al. Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. with decreased detoxification enzymes activities. Pest Manag Sci. 2020;76:3749–58.
Shang W, Xiong Q, Xie Z, Cheng J, Yu B, Zhang H et al. Functional, eco-friendly, and starch-based nanocarriers with sustained release of carvacrol for persistent control of tomato gray mold. Crop Health. 2023;1:13.
Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci Total Environ. 2019;670:292–99.
Sharma S, Gupta S, Jain R, Kothari SL, Kachhwaha S. SiO2 nanoparticles as elicitor for increased rebaudioside-A in Stevia rebaudiana micropropagated in solid and liquid cultures: a comparative study. Plant Cell Tissue Organ Cult. 2023;155:541–52.
Huang Q, Ayyaz A, Farooq MA, Zhang K, Chen W, Hannan F et al. Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance, and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. Environ Pollut. 2024;342:123013.
Zhou J, Liu X, Sun C, Li G, Yang P, Jia Q et al. Silica nanoparticles enhance the disease resistance of ginger to rhizome rot during postharvest storage. Nanomaterials. 2022;12:1418.
Madany MMY, Saleh AM, Habeeb TH, Hozzein WN, AbdElgawad H. Silicon dioxide nanoparticles alleviate the threats of broomrape infection in tomato by inducing cell wall fortification and modulating ROS homeostasis. Environ Sci Nano. 2020;7:1415–30.
El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, Rothen-Rutishauser B et al. Silica Nanoparticles Enhance Disease Resistance in Arabidopsis Plants. Nat Nanotechnol. 2021;16:344.
Tian L, Shen J, Sun G, Wang B, Ji R, Zhao L. Foliar application of SiO2 nanoparticles alters Soil Metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environ Sci Technol. 2020;54:13137–46.
Zhao S, Li M, Ren X, Wang C, Sun X, Sun M, et al. Enhancement of broad-spectrum disease resistance in wheat through key genes involved in systemic acquired resistance. Front Plant Sci. 2024;15:1355178.
Article PubMed PubMed Central Google Scholar
Zeier J. Metabolic regulation of systemic acquired resistance. Curr Opin Plant Biol. 2021;62:102050.
Gao H, Guo M, Song J, Ma Y, Xu Z. Signals in systemic acquired resistance of plants against microbial pathogens. Mol Biol Rep. 2021;48:3747–59.
Wu F, Qiao X, Zhao Y, Zhang Z, Gao Y, Shi L et al. Targeted mutagenesis in Arabidopsis thaliana using CRISPR-Cas12b/C2c1. J Integr Plant Biol. 2020;62:1653–8.
Liu H, Li J, Carvalhais LC, Percy CD, Prakash Verma J, Schenk PM et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol. 2021;229:2873–85.
Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W et al. Melatonin induces disease resistance to botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J Agric Food Chem. 2019;67:6116–24.
Li L, Du C, Wang L, Lai M, Fan H. Exogenous melatonin improves the resistance to cucumber bacterial angular leaf spot caused by Pseudomonas syringae pv. Lachrymans. Physiol Plant. 2022;174:e13724.
Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S et al. Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant Mol Biol. 2022;109:385–99.
He X, Yin B, Zhang J, Zhou S, Li Z, Zhang X, et al. Exogenous melatonin alleviates apple replant disease by regulating rhizosphere soil microbial community structure and nitrogen metabolism. Sci Total Environ. 2023;884:163830.
Noman M, Ahmed T, Shahid M, Nazir MM, Azizullah, Li D, et al. Salicylic acid-doped iron nano-biostimulants potentiate defense responses and suppress Fusarium wilt in watermelon. J Adv Res. 2024;59:19–33.
Rahimzadeh CY, Barzinjy AA, Mohammed AS, Hamad SM. Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles. PLoS One. 2022;17:1–15.
Toledano-Osorio M, Aguilera FS, Muñoz-Soto E, Osorio E, Toledano M, Escames G, et al. Melatonin-doped polymeric nanoparticles induce high crystalline apatite formation in root dentin. Dent Mater. 2021;37:1698–713.
Ahmed T, Shahid M, Noman M, Bilal Khan Niazi M, Zubair M, Almatroudi A, et al. Bioprospecting a native silver-resistant Bacillus safensis strain for green synthesis and subsequent antibacterial and anticancer activities of silver nanoparticles. J Adv Res. 2020;24:475–83.
Article PubMed PubMed Central Google Scholar
Hafeez R, Guo J, Ahmed T, Jiang H, Raza M, Shahid M et al. Bio-formulated chitosan nanoparticles enhance disease resistance against rice blast by physiomorphic, transcriptional, and microbiome modulation of rice (Oryza sativa L.). Carbohydr Polym. 2024;334:122023.
Xu C, Zhong L, Huang Z, Li C, Lian J, Zheng X et al. Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. Plant Methods. 2022;18:1–11.
Ahmed T, Noman M, Jiang H, Shahid M, Ma C, Wu Z, et al. Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L). Nano Today. 2022;45:101547.
Noman M, Ahmed T, Ijaz U, Muhammad Shahid MM, Azizullah N, White JC, et al. Bio-functionalized manganese nanoparticles suppress fusarium wilt in watermelon (Citrullus lanatus L.) by infection disruption, host defense response potentiation, and soil microbial community modulation. Small. 2023;19:e2205687.
Morcillo RJL, Zhao A, Tamayo-Navarrete MI, García-Garrido JM, Macho AP. Tomato root transformation followed by inoculation with ralstonia solanacearum for straight forward genetic analysis of bacterial wilt disease. J Vis Exp. 2020;11:157.
Schönfeld J, Heuer H, Van Elsas JD, Smalla K. Specific and sensitive detection of ralstonia solanacearum in soil on the basis of PCR amplification of flic fragments. Appl Environ Microbiol. 2003;69:7248.
Ahmed T, Shou L, Guo J, Noman M, Qi Y, Yao Y, et al. Modulation of rhizosphere microbial community and metabolites by bio-functionalized nanoscale silicon oxide alleviates cadmium-induced phytotoxicity in bayberry plants. Sci Total Environ. 2024;933:173068.
Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants. 2010;16:259–72.
Chance B, Maehly AC. [136] assay of catalases and peroxidases. Methods Enzymol. 1955;2:764–75.
Giannopolitis CN, Ries SK, Superoxide dismutases. I. occurrence in higher plants. Plant Physiol. 1977;59:309–14.
Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in Thylakoids. Plant Cell Physiol. 1992;33:541–53.
Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98.
Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC et al. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot. 2008;59:3039–50.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods. 2001;25:402–8.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Segata M, Lo Cigno R. Emergency braking: A study of network and application performance. Proc Annu Int Conf Mob Comput Networking, MOBICOM. 2011;1–10.
Li W, Tan L, Zhang N, Chen H, Fan X, Peng M, et al. Phytolith-occluded carbon in residues and economic benefits under rice/single-season Zizania latifolia rotation. Sci Total Environ. 2022;836:155504.
Satheesh V, Mohamed JMM, El-Sherbiny M, Othman G, Al-Serwi RH, Thilagar S. Correction to: Sunlight-assisted green synthesis of silver nanoparticles using Zizania latifolia extract: toward antimicrobial applications. Biomass Convers Biorefinery. 2022;1:1–1.
Agi A, Junin R, Jaafar MZ, Mohsin R, Arsad A, Gbadamosi A, et al. Synthesis and application of rice husk silica nanoparticles for chemical enhanced oil recovery. J Mater Res Technol. 2020;9:13054–66.
Heydarnajad Giglou R, Torabi Giglou M, Esmaeilpour B, Padash A, Ghahremanzadeh S, Sobhanizade A, et al. Exogenous melatonin differentially affects biomass, total carbohydrates, and essential oil production in peppermint upon simultaneous exposure to chitosan-coated Fe3O4NPs. South Afr J Bot. 2023;163:135–44.
Anwar T, Qureshi H, Fatimah H, Siddiqi EH, Anwaar S, Moussa IM, et al. Elucidating effect of ZnO-Nanoparticles and melatonin on physiological adjustments and growth of Solanum melongena under salinity stress. Sci Hortic. 2023;322:112455.
Riaz HR, Hashmi SS, Khan T, Hano C, Giglioli-Guivarc’h N, Abbasi BH. Melatonin-stimulated biosynthesis of anti-microbial ZnONPs by enhancing bio-reductive prospective in callus cultures of Catharanthus roseus var. Alba. Artif Cells, Nanomedicine, Biotechnol. 2018;46:936–50.
Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a new journey for agriculture. Trends Plant Sci. 2024;29:232–48.
Priya SS, Suseem R. Plant-based carbon dots are a sustainable alternative to conventional nanomaterials for biomedical and sensing applications. Nano Express. 2024;5:012002.
Österberg M, Henn KA, Farooq M, Valle-Delgado JJ. Biobased Nanomaterialsthe role of interfacial interactions for advanced materials. Chem Rev. 2023;123:2200–41.
Nagalingam M, Kalpana VN, Panneerselvam VDR. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnol Rep. 2018;19:e00268.
Zhao H, Wang L, Belwal T, Jiang Y, Li D, Xu Y, et al. Chitosan-based melatonin bilayer coating for maintaining quality of fresh-cut products. Carbohydr Polym. 2020;235:115973.
Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A et al. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev. 2014;114:7740–81.
Kabaa EA, Abdulateef SA, Ahmed NM, Hassan Z, Sabah FA. A novel porous silicon multi-ions selective electrode based extended gate field effect transistor for sodium, potassium, calcium, and magnesium sensor. Appl Phys A Mater Sci Process. 2019;125:1–10.
Körmer R, Butz B, Spiecker E, Peukert W. Crystal shape engineering of silicon nanoparticles in a thermal aerosol reactor. Cryst Growth Des. 2012;12:1330–6.
Wu F-G, Zhang X, Kai S, Zhang M, Wang H-Y, Myers JN et al. One-Step synthesis of superbright water-soluble silicon nanoparticles with photoluminescence quantum yield exceeding 80%. Adv Mater Interfaces. 2015;2:1500360.
Patra JK, Baek KH. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J Nanomater. 2014:417305.
Azad A, Zafar H, Faisal R, Sulaiman M. Factors influencing the green synthesis of metallic nanoparticles using plant extracts: A comprehensive review. Pharm Front. 2023;5:117–31.
Balpınar Ö, Nadaroğlu H, Hacımüftüoğlu A. Green synthesis, characterization of melatonin-like drug bioconjugated CoS quantum dots and its antiproliferative effect on different cancer cells. Mol Biol Rep. 2023;50:9143–51.
Siakavella IK, Lamari F, Papoulis D, Orkoula M, Gkolfi P, Lykouras M et al. Effect of plant extracts on the characteristics of silver nanoparticles for topical application. Pharmaceutics. 2020;12:1–17.
Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME et al. Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35.
Ijaz U, Ahmed T, Rizwan M, Noman M, Shah AA, Azeem F, et al. Rice straw based silicon nanoparticles improve morphological and nutrient profile of rice plants under salinity stress by triggering physiological and genetic repair mechanisms. Plant Physiol Biochem. 2023;201:107788.
Gregor C. Generation of bright autobioluminescent bacteria by chromosomal integration of the improved lux operon ilux2. Sci Rep. 2022;12:1–13.
Bazhenov SV, Novoyatlova US, Scheglova ES, Prazdnova EV, Mazanko MS, Kessenikh AG, et al. Bacterial lux-biosensors: constructing, applications, and prospects. Biosens Bioelectron X. 2023;13:100323.
Brodl E, Csamay A, Horn C, Niederhauser J, Weber H, Macheroux P. The impact of LuxF on light intensity in bacterial bioluminescence. J Photochem Photobiol B Biol. 2020;207:111881.
Kaku T, Sugiura K, Entani T, Osabe K, Nagai T.
Comments (0)