Osborne T, Wall B, Edgar DW, Wood TFF. Current understanding of the chronic stress response to burn injury from human studies. Burns Trauma, 11 (2023).
Huang J, Chen Y, Guo Z, Yu Y, Zhang Y, Li P, et al. Prospective study and validation of early warning marker discovery based on integrating multiomics analysis in severe burn patients with sepsis. Burns Trauma. 2023;11:tkac050.
Article PubMed PubMed Central Google Scholar
Cai W, Shen K, Ji P, Jia Y, Han S, Zhang W, et al. The notch pathway attenuates burn-induced acute lung injury in rats by repressing reactive oxygen species. Burns Trauma. 2022;10:tkac008.
Article PubMed PubMed Central Google Scholar
Maybauer MO, Rehberg S, Traber DL, HerndonD DN, Maybauer M. [Pathophysiology of acute lung injury in severe burn and smoke inhalation injury]. Der Anesthesist. 2009;58:805–12.
Herold S, GabrielliI NM, Vadász. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction, American journal of physiology. Lung Cell Mol Physiol. 2013;305:L665–81.
Du PR, Lu HT, Lin XX, Wang LF, Wang YX, Gu XM, et al. Calpain inhibition ameliorates scald burn-induced acute lung injury in rats. Burns Trauma. 2018;6:28.
Article PubMed PubMed Central Google Scholar
Edgar DW, Fish JS, Wood MGFM. Local and systemic treatments for acute edema after burn injury: a systematic review of the literature. J burn care Research: Official Publication Am Burn Association. 2011;32:334–47.
Fang Y, Xu P, Gu C, Wang Y, Fu XJ, Yu WR, et al. Ulinastatin improves pulmonary function in severe burn-induced acute lung injury by attenuating inflammatory response. J Trauma. 2011;71:1297–304.
Li N, Liu B, Xiong R, Li G, WangQ Geng B. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control. Redox Biol. 2023;63:102746.
Article CAS PubMed PubMed Central Google Scholar
Jin SH, Sun JJ, Liu G, Shen LJ, Weng Y, Li JY, et al. Nrf2/PHB2 alleviates mitochondrial damage and protects against Staphylococcus aureus-induced acute lung injury. MedComm. 2023;4:e448.
Article CAS PubMed PubMed Central Google Scholar
Wang K, Rong G, Gao Y, Wang M, Sun J, Sun H, et al. Fluorous-tagged peptide nanoparticles ameliorate Acute Lung Injury via Lysosomal Stabilization and Inflammation Inhibition in Pulmonary macrophages, small (Weinheim a Der Bergstrasse. Germany). 2022;18:e2203432.
Park S, Kim M, Park M, Jin Y, Lee SJLH. Specific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulation. J Hazard Mater. 2023;445:130466.
Article CAS PubMed Google Scholar
Tang JYZ. Molybdenum Nanodots for Acute Lung Injury Therapy, ACS nano, 17 (2023) 23872–88.
Muhammad W, Zhang Y, Zhu J, Xie J, Wang S, Wang R, et al. Codelivery of azithromycin and ibuprofen by ROS-responsive polymer nanoparticles synergistically attenuates the acute lung injury. Biomaterials Adv. 2023;154:213621.
Su X, Jing X, Jiang W, Li M, Liu K, Teng M, Biointerfaces et al. 229 (2023) 113446.
Wu Y, Zhang Y, Tang X, Ye S, Shao J, Tu L, et al. Synergistic antioxidant and anti-inflammatory effects of ceria/resatorvid codecorated nanoparticles for acute lung injury therapy. J Nanobiotechnol. 2023;21:502.
Mannes PZ, Barnes CE, Biermann J, Latoche JD, Day KE, Zhu Q et al. Molecular imaging of chemokine-like receptor 1 (CMKLR1) in experimental acute lung injury, Proceedings of the National Academy of Sciences, 120 (2023) e2216458120.
Liu C, Fan WB, Cheng WX, Gu YP, Chen YM, Zhou WH et al. Red Emissive Carbon dot Superoxide Dismutase Nanozyme for Bioimaging and ameliorating Acute Lung Injury. Adv Funct Mater, 33 (2023).
Almatroudi A, Alsahli MA, Syed MA, KhanA AA, Rahmani H. Regulation of pro-inflammatory macrophage polarization via lipid nanoparticles mediated delivery of Anti-Prostaglandin-E2 siRNA, current issues in molecular biology, 45 (2022) 1–11.
Jin H, Zhao Z, Lan Q, Zhou H, Mai Z, Wang Y et al. Nasal delivery of Hesperidin/Chitosan nanoparticles suppresses Cytokine Storm Syndrome in a mouse model of Acute Lung Injury, Frontiers in pharmacology, 11 (2020) 592238.
Hu Q, Zhang S, Yang Y, Yao JQ, Tang WF, Lyon CJ, et al. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Military Med Res. 2022;9:61.
Lian J, Zhu X, Du J, Huang B, Zhao F, Ma C, et al. Extracellular vesicle-transmitted mir-671-5p alleviates lung inflammation and injury by regulating the AAK1/NF-κB axis. Mol Therapy: J Am Soc Gene Therapy. 2023;31:1365–82.
Bian S, Cai H, Cui Y, Xiao WLC. Nanomedicine-based therapeutics to Combat Acute Lung Injury. Int J Nanomed. 2021;16:2247–69.
Albers GJ, Amouret A, Ciupka K, Montes-Cobos E, Reichardt CFHM. Glucocorticoid nanoparticles show full therapeutic efficacy in a mouse model of Acute Lung Injury and concomitantly reduce adverse effects. Int J Mol Sci, 24 (2023).
Janjic RVJM. Macrophage-targeted nanomedicines for ARDS/ALI: promise and potential, inflammation, 45 (2022) 2124–41.
Lin P, Gao R, Fang Z, Yang W, Tang Z, Wang Q, et al. Precise nanodrug delivery systems with cell-specific targeting for ALI/ARDS treatment. Int J Pharm. 2023;644:123321.
Article CAS PubMed Google Scholar
Ning L, Shishi Z, Huiqing WBL. Targeting immunometabolism against acute lung injury, clinical immunology (Orlando, Fla.), 249 (2023) 109289.
He H, Yang W, Su N, Zhang C, Dai J, Han F et al. Activating NO–sGC crosstalk in the mouse vascular niche promotes vascular integrity and mitigates acute lung injury. J Exp Med, 220 (2023).
Milton-Jones H, Soussi S, Davies R, Charbonney E, Charles WN, Cleland H, et al. An international RAND/UCLA expert panel to determine the optimal diagnosis and management of burn inhalation injury. Crit Care. 2023;27:459.
Article PubMed PubMed Central Google Scholar
Qi X, Luo Y, Xiao M, Zhang Q, Luo J, Ma L, et al. Mechanisms of alveolar type 2 epithelial cell death during Acute Lung Injury. Stem Cells. 2023;41:1113–32.
Atmowihardjo LN, Heijnen NFL, Smit MR, Hagens LA, Filippini DFL, Zimatore C, et al. Biomarkers of alveolar epithelial injury and endothelial dysfunction are associated with scores of pulmonary edema in invasively ventilated patients. Am J Physiology-Lung Cell Mol Physiol. 2023;324:L38–47.
Feng B, Feng X, Yu Y, Xu H, Ye Q, Hu R, et al. Mesenchymal stem cells shift the pro-inflammatory phenotype of neutrophils to ameliorate acute lung injury. Stem Cell Res Ther. 2023;14:197.
Article PubMed PubMed Central Google Scholar
Li S, Li M, Huo S, Wang Q, Chen J, Ding S, et al. Voluntary-Opsonization‐enabled Precision Nanomedicines for inflammation treatment. Adv Mater. 2020;33:e2006160.
Zhang D, Li Y, Jiang W, Li W, YuanZ Lin X, NETWORK PHARMACOLOGY-BASED A, TREATMENT ANALYSIS OF LUTEOLIN FOR REGULATING PYROPTOSIS IN ACUTE LUNG INJURY., Shock (Augusta, Ga.), 60 (2023) 306–14.
Xu H, Sheng S, Luo W, Zhang XXZ. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup, frontiers in immunology, 14 (2023) 1277161.
Marquis KM, Hammer MM, Steinbrecher K, Henry TS, Lin C-Y, Shifren A et al. CT Approach to Lung Injury, Radiographics: a review publication of the Radiological Society of North America, Inc, 43 (2023) e220176.
Chen J, Ma S, Luo B, Hao H, Li Y, Yang H, et al. Human umbilical cord mesenchymal stromal cell small extracellular vesicle transfer of microRNA-223-3p to lung epithelial cells attenuates inflammation in acute lung injury in mice. J Nanobiotechnol. 2023;21:295.
A P WheelerG R Bernard. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369:1553–64.
Gorman EA, O’KaneD CM, McAuley F. Acute respiratory distress syndrome 2022 2 acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management. Lancet. 2022;400:1157–70.
L D J BosL B, Ware. Acute respiratory distress syndrome 2022 1 Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes, Lancet, 400 (2022) 1145–56.
Constantin JM, Jabaudon M, Lefrant JY, Jaber S, Quenot JP, Langeron O, et al. Personalized mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicenter, single-blind, randomized controlled trial. Lancet Resp Med. 2019;7:870–80.
Beitler JR, Thompson BT, Baron RM, Bastarache JA, Denlinger LC, Esserman L, et al. Advancing precision medicine for acute respiratory distress syndrome. Lancet Resp Med. 2022;10:107–20.
Goligher EC, FergusonL ND, Brochard J. Clinical challenges in mechanical ventilation. Lancet. 2016;387:1856–66.
Enkhbaatar P, Pruitt BA, Suman O, Mlcak R, Wolf SE, Sakurai H, et al. Pathophysiology, research challenges, and clinical management of smoke inhalation injury. Lancet. 2016;388:1437–46.
Article PubMed PubMed Central Google Scholar
Fan CC, Zhang ZY, Lai ZC, Yang YZ, Li JM, Liu L, et al. Chemical Evolution and Biological evaluation of Natural products for efficient therapy of Acute Lung Injury. Adv Sci; 2023.
Sun HL, Peng ML, Lee SS, Chen CJ, Chen WY, Yang ML, et al. Endotoxin-Induced Acute Lung Injury in mice is protected by 5,7-Dihydroxy-8-Methoxyflavone via inhibition of oxidative stress and HIF-1α. Environ Toxicol. 2016;31:1700–9.
Article CAS PubMed Google Scholar
Ren R, Wang X, XuW ZH, Jiang L. Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo. Arch Pharm Res. 2023;46:564–72.
Comments (0)