Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341:1097–105. http://www.nejm.org/doi/abs/10.1056/NEJM199910073411501.
Article PubMed CAS Google Scholar
Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96. https://linkinghub.elsevier.com/retrieve/pii/S0140673609603184.
Article PubMed Central Google Scholar
Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794–8. http://www.nejm.org/doi/10.1056/NEJMsr1606602.
Article PubMed PubMed Central Google Scholar
Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12:e426–37.
Article PubMed CAS Google Scholar
Yumuk V, Tsigos C, Fried M, Schindler K, Busetto L, Micic D, et al. European guidelines for obesity management in adults. Obes Facts. 2015;8:402–24. https://www.karger.com/Article/FullText/442721.
Article PubMed PubMed Central Google Scholar
Galen KA, Horst KW, Serlie MJ. Serotonin, food intake, and obesity. Obes Rev. 2021;22. https://onlinelibrary.wiley.com/doi/10.1111/obr.13210.
Halford J, Harrold J, Lawton C, Blundell J. Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity. CDT. 2005;6:201–13. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-4501&volume=6&issue=2&spage=201.
European Medicines Agency. Questions and answers: withdrawal marketing authorisation application Belviq (lorcaserin). 30 May 2013. https://www.ema.europa.eu/en/documents/medicine-qa/questions-answers-withdrawal-marketing-authorisation-application-belviq_en.pdf. Accessed 7 Nov 2020
Sharretts J, Galescu O, Gomatam S, Andraca-Carrera E, Hampp C, Yanoff L. Cancer risk associated with Lorcaserin—the FDA’s review of the CAMELLIA-TIMI 61 trial. N Engl J Med. 2020;383:1000–2. http://www.nejm.org/doi/10.1056/NEJMp2003873.
Article PubMed CAS Google Scholar
Marazziti D, Baroni S, Pirone A, Giannaccini G, Betti L, Schmid L, et al. Distribution of serotonin receptor of type 6 (5-HT6) in human brain post-mortem. A pharmacology, autoradiography and immunohistochemistry study. Neurochem Res. 2012;37:920–7.
Article PubMed CAS Google Scholar
Heal D, Gosden J, Smith S. The 5-HT6 receptor as a target for developing novel antiobesity drugs. Int Rev Neurobiol. 2011:73–109. https://linkinghub.elsevier.com/retrieve/pii/B9780123859020000048.
Woolley ML, Bentley JC, Sleight AJ, Marsden CA, Fone KCF. A role for 5-ht6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology. 2001;41:210–9. https://linkinghub.elsevier.com/retrieve/pii/S0028390801000569.
Article PubMed CAS Google Scholar
Svartengren J, Öhman B, Edling N, Svensson M, Fhölenhag K, Axelsson-Lendin P, et al. The serotonin 5-HT6 receptor antagonist BVT.5182 reduces body weight of high fat diet-induced mice. Int J Obes. 2003b;27:1–94.
Perez-García G, Meneses A. Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task. Pharm Biochem Behav. 2005;81:673–82.
Dudek M, Marcinkowska M, Bucki A, Olczyk A, Kołaczkowski M. Idalopirdine—a small molecule antagonist of 5-HT6 with therapeutic potential against obesity. Metab Brain Dis. 2015;30:1487–94. http://link.springer.com/10.1007/s11011-015-9736-3.
Article PubMed PubMed Central CAS Google Scholar
Lubelska A, Latacz G, Jastrzębska-Więsek M, Kotańska M, Kurczab R, Partyka A, et al. Are the hydantoin-1,3,5-triazine 5-HT6R ligands a hope to a find new procognitive and anti-obesity drug? Considerations based on primary in vivo assays and ADME-Tox profile in vitro. Molecules 2019;24:4472. https://www.mdpi.com/1420-3049/24/24/4472.
Article PubMed PubMed Central CAS Google Scholar
Frassetto A, Zhang J, Lao JZ, White A, Metzger JM, Fong TM, et al. Reduced sensitivity to diet-induced obesity in mice carrying a mutant 5-HT6 receptor. Brain Res. 2008;1236:140–4. https://linkinghub.elsevier.com/retrieve/pii/S0006899308019872.
Article PubMed CAS Google Scholar
Tecott LH, Brennan TJ. Serotonin 5-HT6 receptor knockout mouse. US Patent 6060642. 2000. http://www.freepatentsonline.com/6060642.html.
Kotańska M, Lustyk K, Bucki A, Marcinkowska M, Śniecikowska J, Kołaczkowski M. Idalopirdine, a selective 5-HT6 receptor antagonist, reduces food intake and body weight in a model of excessive eating. Metab Brain Dis. 2018;33:733–40.
Article PubMed PubMed Central Google Scholar
Kurczab R, Ali W, Łażewska D, Kotańska M, Jastrzębska-Więsek M, Satała G, et al. Computer-aided studies for novel arylhydantoin 1,3,5-triazine derivatives as 5-HT6 serotonin receptor ligands with antidepressive-like, anxiolytic and antiobesity action in vivo. Molecules 2018;23:2529. http://www.mdpi.com/1420-3049/23/10/2529.
Article PubMed PubMed Central Google Scholar
Becker G, Colomb J, Sgambato-Faure V, Tremblay L, Billard T, Zimmer L. Preclinical evaluation of [18F]2FNQ1P as the first fluorinated serotonin 5-HT6 radioligand for PET imaging. Eur J Nucl Med Mol Imaging. 2015;42:495–502. http://link.springer.com/10.1007/s00259-014-2936-y.
Article PubMed CAS Google Scholar
Colomb J, Becker G, Fieux S, Zimmer L, Billard T. Syntheses, radiolabelings, and in vitro evaluations of fluorinated PET radioligands of 5-HT6 serotoninergic receptors. J Med Chem. 2014;57:3884–90. http://pubs.acs.org/doi/10.1021/jm500372e.
Article PubMed CAS Google Scholar
Courault P, Bouvard S, Bouillot C, Bolbos R, Iecker T, Billard T, et al. Influence of obesity on brain 5-HT6 receptor expression: an in-vivo study with the PET radiotracer [18F]2FNQ1P. 2021. https://zenodo.org/record/4700238.
Guerville M, Leroy A, Sinquin A, Laugerette F, Michalski MC, Boudry G. Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. Am J Physiol Endocrinol Metab. 2017;313:E107–20. https://www.physiology.org/doi/10.1152/ajpendo.00372.2016.
Kaya M, Ahishali B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans Blue, sodium fluorescein, and horseradish peroxidase. In: Turksen K, editor. Permeability barrier (Methods in molecular biology, Vol. 763). Totowa, NJ: Humana Press; 2011. pp. 369–82. http://link.springer.com/10.1007/978-1-61779-191-8_25.
Barrière DA, Magalhães R, Novais A, Marques P, Selingue E, Geffroy F, et al. The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization. Nat Commun. 2019;10:5699.
Article PubMed PubMed Central Google Scholar
Marques C, Meireles M, Norberto S, Leite J, Freitas J, Pestana D, et al. High-fat diet-induced obesity rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocyte. 2016;5:11–21. http://www.tandfonline.com/doi/full/10.1080/21623945.2015.1061723.
Article PubMed CAS Google Scholar
Roberts JC, Reavill C, East SZ, Harrison PJ, Patel S, Routledge C, et al. The distribution of 5-HT6 receptors in rat brain: an autoradiographic binding study using the radiolabelled 5-HT6 receptor antagonist [125I]SB-258585. Brain Res. 2002;934:49–57. https://linkinghub.elsevier.com/retrieve/pii/S0006899302023600.
Article PubMed CAS Google Scholar
Woolley M, Marsden C, Fone K. 5-ht6 receptors. CDTCNSND. 2004;3:59–79. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1568-007X&volume=3&issue=1&spage=59.
Broberger C. Brain regulation of food intake and appetite: molecules and networks. J Intern Med. 2005;258:301–27. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2796.2005.01553.x.
Article PubMed CAS Google Scholar
Woods S, Clarke N, Layfield R, Fone K. 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms: 5-HT6 receptor effects on associative learning. Br J Pharmacol. 2012;167:436–49. https://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2012.02022.x.
Article PubMed PubMed Central CAS Google Scholar
Liśkiewicz, Liśkiewicz AD, Marczak D, Przybyła M, Grabowska K, Student S, et al. Obesity-associated deterioration of the hippocampus is partially restored after weight loss. Brain Behav Immun. 2021;96:212–26. https://linkinghub.elsevier.com/retrieve/pii/S0889159121002312.
Comments (0)