Nallella, K. P., Sharma, R. K., Aziz, N., & Agarwal, A. (2006). Significance of sperm characteristics in the evaluation of male infertility. Fertility and Sterility, 85(3), 629–634. https://doi.org/10.1016/j.fertnstert.2005.08.024
Agarwal, A., Baskaran, S., Parekh, N., Cho, C. L., Henkel, R., Vij, S., & Shah, R. (2021). Male infertility. The Lancet., 397(10271), 313–333.
Yeste, M., Bonet, S., Rodríguez-Gil, J. E., & Rivera Del Álamo, M. M. (2018). Evaluation of sperm motility with CASA-Mot: Which factors may influence our measurements? Reproduction, Fertility and Development., 30(6), 789.
Pereira, R., Sá, R., Barros, A., & Sousa, M. (2017). Major regulatory mechanisms involved in sperm motility. Asian Journal of Andrology., 19(1), 5.
Article CAS PubMed Google Scholar
Ortega, C., Verheyen, G., Raick, D., Camus, M., Devroey, P., & Tournaye, H. (2011). Absolute asthenozoospermia and ICSI: What are the options? Human Reproduction Update, 17(5), 684–692.
Article CAS PubMed Google Scholar
Curi, S. M., Ariagno, J. I., Chenlo, P. H., Mendeluk, G. R., Pugliese, M. N., Sardi Segovia, L. M., & Blanco, A. M. (2003). Asthenozoospermia: Analysis of a large population. Archives of Andrology, 49(5), 343–349. https://doi.org/10.1080/01485010390219656
Article CAS PubMed Google Scholar
Babakhanzadeh, E., Nazari, M., Ghasemifar, S., & Khodadadian, A. (2020). Some of the factors involved in male infertility: A prospective review. International Journal of General Medicine, 13(29), 41.
Gopalkrishnan, K., Padwal, V., D’Souza, S., & Shah, R. (1995). Severe asthenozoospermia: A structural and functional study. International Journal of Andrology, 18, 67–74. https://doi.org/10.1111/j.1365-2605.1995.tb00642.x
Shahrokhi, S. Z., Salehi, P., Alyasin, A., Taghiyar, S., & Deemeh, M. R. (2020). Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia, 52(2), e13463.
Ribeiro, J. C., Nogueira-Ferreira, R., Amado, F., Alves, M. G., Ferreira, R., & Oliveira, P. F. (2022). Exploring the Role of Oxidative Stress in Sperm Motility: A Proteomic Network Approach. Antioxidants and Redox Signaling, 37(7–9), 501.
Article CAS PubMed Google Scholar
El-Taieb, M. A. A., Herwig, R., Nada, E. A., Greilberger, J., & Marberger, M. (2009). Oxidative stress and epididymal sperm transport, motility and morphological defects. European Journal of Obstetrics and Gynecology and Reproductive Biology, 144(SUPPL 1), S199–S203.
Article CAS PubMed Google Scholar
Kumar, R., Venkatesh, S., Kumar, M., Tanwar, M., Shasmsi, M. B., Kumar, R., & Dada, R. (2009). Oxidative stress and sperm mitochondrial DNA mutation in idiopathic oligoasthenozoospermic men. Indian Journal of Biochemistry and Biophysics, 46(2), 172–177.
De Freitas, L. F., & Hamblin, M. R. (2016). Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 348–364. https://doi.org/10.1109/JSTQE.2016.2561201
Parvin, A., Erabi, G., Saboohi Tasooji, M. R., Sadeghpour, S., Mellatyar, H., Rezaei Arablouydareh, S., & Ghasemnejad-Berenji, H. (2024). The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochemistry and Photobiology. https://doi.org/10.1111/php.13941
Desmet, K. D., Paz, D. A., Corry, J. J., Eells, J. T., Wong-Riley, M. T. T., Henry, M. M., & Whelan, H. T. (2006). Clinical and experimental applications of NIR-LED photobiomodulation. Photomedicine and Laser Surgery, 24(2), 121–128.
Article CAS PubMed Google Scholar
Saylan, A., Firat, T., & Yis, O. M. (2023). Effects of photobiomodulation therapy on human sperm function. Revista Internacional de Andrologia, 21(2), 100340. https://doi.org/10.1016/j.androl.2022.04.001
Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics. https://doi.org/10.3934/biophy.2017.3.337
Article PubMed PubMed Central Google Scholar
Serrage, H., Heiskanen, V., Palin, W. M., Cooper, P. R., Milward, M. R., Hadis, M., & Hamblin, M. R. (2019). Under the spotlight: Mechanisms of photobiomodulation concentrating on blue and green light. Photochemical and Photobiological Sciences, 18(8), 1877–1909. https://doi.org/10.1039/c9pp00089e
Article CAS PubMed Google Scholar
Hasani, A., Khosravi, A., Rahimi, K., Afshar, A., Fadaei-Fathabadi, F., Raoofi, A., & Abdollahifar, M. A. (2020). Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice. Life Sciences, 254, 117767. https://doi.org/10.1016/j.lfs.2020.117767
Article CAS PubMed Google Scholar
Lipko, N. B. (2022). Photobiomodulation: Evolution and Adaptation. Photobiomodulation, Photomedicine, and Laser Surgery, 40(4), 213–233. https://doi.org/10.1089/photob.2021.0145
Article CAS PubMed Google Scholar
Karu, T. (2013). Is it time to consider photobiomodulation as a drug equivalent? Photomedicine and Laser Surgery, 31(5), 189–191. https://doi.org/10.1089/pho.2013.3510
Article CAS PubMed PubMed Central Google Scholar
Dompe, C., Moncrieff, L., Matys, J., Grzech-Leśniak, K., Kocherova, I., Bryja, A., & Dyszkiewicz-Konwińska, M. (2020). Photobiomodulation—underlying mechanism and clinical applications. Journal of Clinical Medicine, 9(6), 1724.
Article PubMed PubMed Central Google Scholar
Suresh, S., Merugu, S., Mithradas, N., & Sivasankari. (2015). Low-level laser therapy: A biostimulation therapy in periodontics. SRM Journal of Research in Dental Sciences, 6(1), 53. https://doi.org/10.4103/0976-433x.149595
Lins, R. D. A. U., Dantas, E. M., Lucena, K. C. R., Catão, M. H. C. V., Granville-Garcia, A. F., & Carvalho Neto, L. G. (2010). Biostimulation effects of low-power laser in the repair process. Anais Brasileiros de Dermatologia, 85(6), 849–855. https://doi.org/10.1590/S0365-05962010000600011
AL-Timimi Z. (2021). Improvement of antibiotics absorption and regulation of tissue oxygenation through blood laser irradiation. Heliyon, 7(4), e06863. https://doi.org/10.1016/j.heliyon.2021.e06863
Article CAS PubMed PubMed Central Google Scholar
Al-Timimi, Z., & Mustafa, F. H. (2018). Recognizing the effectiveness of the diode laser 850nm on stimulate the proliferation and viability of mice mesenchymal stem cells derived from bone marrow and adipose tissue. Iraqi Journal of Veterinary Sciences, 32(2), 285–290.
Safian, F., Ghaffari Novin, M., Karimi, M., Kazemi, M., Zare, F., Ghoreishi, S. K., & Bayat, M. (2020). Photobiomodulation with 810 nm Wavelengths Improves Human Sperms’ Motility and Viability In Vitro. Photobiomodulation, Photomedicine, and Laser Surgery, 38(4), 222–231. https://doi.org/10.1089/photob.2019.4773
Article CAS PubMed Google Scholar
Salman Yazdi, R., Bakhshi, S., Jannat Alipoor, F., Akhoond, M. R., Borhani, S., Farrahi, F., & Sadighi Gilani, M. A. (2014). Effect of 830-nm diode laser irradiation on human sperm motility. Lasers in Medical Science, 29(1), 97–104.
Škerget, M., Kotnik, P., Hadolin, M., Hraš, A. R., Simonič, M., & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2), 191–198. https://doi.org/10.1016/j.foodchem.2004.02.025
Ali, F., Rahul, F. N., Jyoti, S., & Siddique, Y. H. (2017). Health functionality of apigenin: A review. International Journal of Food Properties, 20(6), 1197–1238. https://doi.org/10.1080/10942912.2016.1207188
Imran, M., Aslam Gondal, T., Atif, M., Shahbaz, M., Batool Qaisarani, T., Hanif Mughal, M., & Sharifi-Rad, J. (2020). Apigenin as an anticancer agent. Phytotherapy Research, 34(8), 1812–1828.
Comments (0)