Examining the combined benefits of photobiomodulation and apigenin for the treatment of asthenozoospermia: An innovative therapeutic strategy

Nallella, K. P., Sharma, R. K., Aziz, N., & Agarwal, A. (2006). Significance of sperm characteristics in the evaluation of male infertility. Fertility and Sterility, 85(3), 629–634. https://doi.org/10.1016/j.fertnstert.2005.08.024

Article  PubMed  Google Scholar 

Agarwal, A., Baskaran, S., Parekh, N., Cho, C. L., Henkel, R., Vij, S., & Shah, R. (2021). Male infertility. The Lancet., 397(10271), 313–333.

Article  Google Scholar 

Yeste, M., Bonet, S., Rodríguez-Gil, J. E., & Rivera Del Álamo, M. M. (2018). Evaluation of sperm motility with CASA-Mot: Which factors may influence our measurements? Reproduction, Fertility and Development., 30(6), 789.

Article  PubMed  Google Scholar 

Pereira, R., Sá, R., Barros, A., & Sousa, M. (2017). Major regulatory mechanisms involved in sperm motility. Asian Journal of Andrology., 19(1), 5.

Article  CAS  PubMed  Google Scholar 

Ortega, C., Verheyen, G., Raick, D., Camus, M., Devroey, P., & Tournaye, H. (2011). Absolute asthenozoospermia and ICSI: What are the options? Human Reproduction Update, 17(5), 684–692.

Article  CAS  PubMed  Google Scholar 

Curi, S. M., Ariagno, J. I., Chenlo, P. H., Mendeluk, G. R., Pugliese, M. N., Sardi Segovia, L. M., & Blanco, A. M. (2003). Asthenozoospermia: Analysis of a large population. Archives of Andrology, 49(5), 343–349. https://doi.org/10.1080/01485010390219656

Article  CAS  PubMed  Google Scholar 

Babakhanzadeh, E., Nazari, M., Ghasemifar, S., & Khodadadian, A. (2020). Some of the factors involved in male infertility: A prospective review. International Journal of General Medicine, 13(29), 41.

Google Scholar 

Gopalkrishnan, K., Padwal, V., D’Souza, S., & Shah, R. (1995). Severe asthenozoospermia: A structural and functional study. International Journal of Andrology, 18, 67–74. https://doi.org/10.1111/j.1365-2605.1995.tb00642.x

Article  PubMed  Google Scholar 

Shahrokhi, S. Z., Salehi, P., Alyasin, A., Taghiyar, S., & Deemeh, M. R. (2020). Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia, 52(2), e13463.

Article  PubMed  Google Scholar 

Ribeiro, J. C., Nogueira-Ferreira, R., Amado, F., Alves, M. G., Ferreira, R., & Oliveira, P. F. (2022). Exploring the Role of Oxidative Stress in Sperm Motility: A Proteomic Network Approach. Antioxidants and Redox Signaling, 37(7–9), 501.

Article  CAS  PubMed  Google Scholar 

El-Taieb, M. A. A., Herwig, R., Nada, E. A., Greilberger, J., & Marberger, M. (2009). Oxidative stress and epididymal sperm transport, motility and morphological defects. European Journal of Obstetrics and Gynecology and Reproductive Biology, 144(SUPPL 1), S199–S203.

Article  CAS  PubMed  Google Scholar 

Kumar, R., Venkatesh, S., Kumar, M., Tanwar, M., Shasmsi, M. B., Kumar, R., & Dada, R. (2009). Oxidative stress and sperm mitochondrial DNA mutation in idiopathic oligoasthenozoospermic men. Indian Journal of Biochemistry and Biophysics, 46(2), 172–177.

CAS  PubMed  Google Scholar 

De Freitas, L. F., & Hamblin, M. R. (2016). Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 348–364. https://doi.org/10.1109/JSTQE.2016.2561201

Article  CAS  Google Scholar 

Parvin, A., Erabi, G., Saboohi Tasooji, M. R., Sadeghpour, S., Mellatyar, H., Rezaei Arablouydareh, S., & Ghasemnejad-Berenji, H. (2024). The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochemistry and Photobiology. https://doi.org/10.1111/php.13941

Article  PubMed  Google Scholar 

Desmet, K. D., Paz, D. A., Corry, J. J., Eells, J. T., Wong-Riley, M. T. T., Henry, M. M., & Whelan, H. T. (2006). Clinical and experimental applications of NIR-LED photobiomodulation. Photomedicine and Laser Surgery, 24(2), 121–128.

Article  CAS  PubMed  Google Scholar 

Saylan, A., Firat, T., & Yis, O. M. (2023). Effects of photobiomodulation therapy on human sperm function. Revista Internacional de Andrologia, 21(2), 100340. https://doi.org/10.1016/j.androl.2022.04.001

Article  PubMed  Google Scholar 

Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics. https://doi.org/10.3934/biophy.2017.3.337

Article  PubMed  PubMed Central  Google Scholar 

Serrage, H., Heiskanen, V., Palin, W. M., Cooper, P. R., Milward, M. R., Hadis, M., & Hamblin, M. R. (2019). Under the spotlight: Mechanisms of photobiomodulation concentrating on blue and green light. Photochemical and Photobiological Sciences, 18(8), 1877–1909. https://doi.org/10.1039/c9pp00089e

Article  CAS  PubMed  Google Scholar 

Hasani, A., Khosravi, A., Rahimi, K., Afshar, A., Fadaei-Fathabadi, F., Raoofi, A., & Abdollahifar, M. A. (2020). Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice. Life Sciences, 254, 117767. https://doi.org/10.1016/j.lfs.2020.117767

Article  CAS  PubMed  Google Scholar 

Lipko, N. B. (2022). Photobiomodulation: Evolution and Adaptation. Photobiomodulation, Photomedicine, and Laser Surgery, 40(4), 213–233. https://doi.org/10.1089/photob.2021.0145

Article  CAS  PubMed  Google Scholar 

Karu, T. (2013). Is it time to consider photobiomodulation as a drug equivalent? Photomedicine and Laser Surgery, 31(5), 189–191. https://doi.org/10.1089/pho.2013.3510

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dompe, C., Moncrieff, L., Matys, J., Grzech-Leśniak, K., Kocherova, I., Bryja, A., & Dyszkiewicz-Konwińska, M. (2020). Photobiomodulation—underlying mechanism and clinical applications. Journal of Clinical Medicine, 9(6), 1724.

Article  PubMed  PubMed Central  Google Scholar 

Suresh, S., Merugu, S., Mithradas, N., & Sivasankari. (2015). Low-level laser therapy: A biostimulation therapy in periodontics. SRM Journal of Research in Dental Sciences, 6(1), 53. https://doi.org/10.4103/0976-433x.149595

Article  Google Scholar 

Lins, R. D. A. U., Dantas, E. M., Lucena, K. C. R., Catão, M. H. C. V., Granville-Garcia, A. F., & Carvalho Neto, L. G. (2010). Biostimulation effects of low-power laser in the repair process. Anais Brasileiros de Dermatologia, 85(6), 849–855. https://doi.org/10.1590/S0365-05962010000600011

Article  PubMed  Google Scholar 

AL-Timimi Z. (2021). Improvement of antibiotics absorption and regulation of tissue oxygenation through blood laser irradiation. Heliyon, 7(4), e06863. https://doi.org/10.1016/j.heliyon.2021.e06863

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Timimi, Z., & Mustafa, F. H. (2018). Recognizing the effectiveness of the diode laser 850nm on stimulate the proliferation and viability of mice mesenchymal stem cells derived from bone marrow and adipose tissue. Iraqi Journal of Veterinary Sciences, 32(2), 285–290.

Article  Google Scholar 

Safian, F., Ghaffari Novin, M., Karimi, M., Kazemi, M., Zare, F., Ghoreishi, S. K., & Bayat, M. (2020). Photobiomodulation with 810 nm Wavelengths Improves Human Sperms’ Motility and Viability In Vitro. Photobiomodulation, Photomedicine, and Laser Surgery, 38(4), 222–231. https://doi.org/10.1089/photob.2019.4773

Article  CAS  PubMed  Google Scholar 

Salman Yazdi, R., Bakhshi, S., Jannat Alipoor, F., Akhoond, M. R., Borhani, S., Farrahi, F., & Sadighi Gilani, M. A. (2014). Effect of 830-nm diode laser irradiation on human sperm motility. Lasers in Medical Science, 29(1), 97–104.

Article  PubMed  Google Scholar 

Škerget, M., Kotnik, P., Hadolin, M., Hraš, A. R., Simonič, M., & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2), 191–198. https://doi.org/10.1016/j.foodchem.2004.02.025

Article  CAS  Google Scholar 

Ali, F., Rahul, F. N., Jyoti, S., & Siddique, Y. H. (2017). Health functionality of apigenin: A review. International Journal of Food Properties, 20(6), 1197–1238. https://doi.org/10.1080/10942912.2016.1207188

Article  CAS  Google Scholar 

Imran, M., Aslam Gondal, T., Atif, M., Shahbaz, M., Batool Qaisarani, T., Hanif Mughal, M., & Sharifi-Rad, J. (2020). Apigenin as an anticancer agent. Phytotherapy Research, 34(8), 1812–1828.

Article  CAS  PubMed 

Comments (0)

No login
gif