Optical trapping-induced crystallization promoted by gold and silicon nanoparticles

Chen, J., Sarma, B., Evans, J. M. B., & Myerson, A. S. (2011). Pharmaceutical crystallization. Crystal Growth and Design, 11(4), 887–895. https://doi.org/10.1021/cg101556s

Article  CAS  Google Scholar 

Gao, Z., Rohani, S., Gong, J., & Wang, J. (2017). Recent developments in the crystallization process: Toward the pharmaceutical industry. Engineering, 3(3), 343–353. https://doi.org/10.1016/J.ENG.2017.03.02

Article  Google Scholar 

Thayyil, A. R., Juturu, T., Nayak, S., & Kamath, S. (2020). Crystallization: Regulatory aspects, design, characterization, and applications. Advanced Pharmaceutical Bulletin., 10(2), 203–212. https://doi.org/10.34172/apb.2020.024

Article  CAS  Google Scholar 

Davey, R. J., & Garside, J. (2000). From molecules to crystallizers. Oxford University Press.

Book  Google Scholar 

Mullin, J. W., & Nývlt, J. (1971). Programmed cooling of batch crystallizers. Chemical Engineering Science, 26(3), 369–377. https://doi.org/10.1016/0009-2509(71)83012-9

Article  CAS  Google Scholar 

Mersmann, A. (2001). Crystallization technology handbook. CRC Press. https://doi.org/10.1201/9780203908280

Book  Google Scholar 

Glade, H., & Ulrich, J. (2003). Influence of solution composition on the formation of crystalline scales. Chemical Engineering & Technology, 26(3), 277–281. https://doi.org/10.1002/ceat.200390041

Article  CAS  Google Scholar 

Liu, G., Zhang, X., & Wang, D. (2014). Tailoring crystallization: Towards high-performance poly(lactic acid). Advanced Materials, 26(40), 6905–6911. https://doi.org/10.1002/adma.201305413

Article  PubMed  CAS  Google Scholar 

Hartel, R. W. (2013). Advances in food crystallization. Annual Review of Food Science and Technology, 4(1), 277–292. https://doi.org/10.1146/annurev-food-030212-182530

Article  PubMed  CAS  Google Scholar 

Deora, N. S., Misra, N. N., Deswal, A., Mishra, H. N., Cullen, P. J., & Tiwari, B. K. (2013). Ultrasound for improved crystallisation in food processing. Food Engineering Reviews, 5(1), 36–44. https://doi.org/10.1007/s12393-012-9061-0

Article  Google Scholar 

Chen, R.-Q., Lu, Q.-Q., Cheng, Q.-D., Ao, L.-B., Zhang, C.-Y., Hou, H., Liu, Y.-M., Li, D.-W., & Yin, D.-C. (2015). An ignored variable: Solution preparation temperature in protein crystallization. Scientific Reports, 5(1), 7797. https://doi.org/10.1038/srep07797

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu, Z. Q., Chew, J. W., Chow, P. S., & Tan, R. B. H. (2007). Recent advances in crystallization control. Chemical Engineering Research and Design, 85(7), 893–905. https://doi.org/10.1205/cherd06234

Article  CAS  Google Scholar 

Myerson, A. S. (1993). Handbook of industrial crystallization. Butterworth-Heinemann.

Google Scholar 

Barber, E. R., Ward, M. R., Ward, A. D., & Alexander, A. J. (2021). Laser-induced nucleation promotes crystal growth of anhydrous sodium bromide. CrystEngComm, 23(47), 8451–8461. https://doi.org/10.1039/d1ce01180d

Article  CAS  Google Scholar 

Knott, B. C., Larue, J. L., Wodtke, A. M., Doherty, M. F., & Peters, B. (2011). Communication: Bubbles, crystals, and laser-induced nucleation. Journal of Chemical Physics. https://doi.org/10.1063/1.3582897

Article  PubMed  Google Scholar 

Korede, V., Nagalingam, N., Penha, F. M., van der Linden, N., Padding, J. T., Hartkamp, R., & Eral, H. B. (2023). A review of laser-induced crystallization from solution. Crystal Growth and Design, 23(5), 3873–3916. https://doi.org/10.1021/acs.cgd.2c01526

Article  PubMed  CAS  Google Scholar 

Sugiyama, T., & Wang, S. F. (2022). Manipulation of nucleation and polymorphism by laser irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 52, 100530. https://doi.org/10.1016/j.jphotochemrev.2022.100530

Article  CAS  Google Scholar 

Garetz, B. A., Aber, J. E., Goddard, N. L., Young, R. G., & Myerson, A. S. (1996). Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions. Physical Review Letters, 77(16), 3475–3476. https://doi.org/10.1103/PhysRevLett.77.3475

Article  PubMed  CAS  Google Scholar 

Alexander, A. J., & Camp, P. J. (2019). Non-photochemical laser-induced nucleation. Journal of Chemical Physics. https://doi.org/10.1063/1.5079328

Article  PubMed  Google Scholar 

Mellah, D., Nicolaï, B., Fournier, B., Bošnjaković-Pavlović, N., Legrand, F.-X., Gemeiner, P., Boemare, V., Guiblin, N., Assi, A., Tfayli, A., Konate, S., Durand, P., & Spasojević-de Biré, A. (2022). New cocrystallization method: Non-photochemical laser-induced nucleation of a cocrystal of caffeine–gallic acid in water. Crystal Growth & Design, 22(10), 5982–5995. https://doi.org/10.1021/acs.cgd.2c00624

Article  CAS  Google Scholar 

Li, S., Xie, X., & Liu, Y. (2024). Effect of acidic polymers on the morphology of non-photochemical laser-induced nucleation of potassium bromide. Scientific Reports, 14(1), 8051. https://doi.org/10.1038/s41598-024-58558-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ikni, A., Clair, B., Scouflaire, P., Veesler, S., Gillet, J.-M., ElHassan, N., Dumas, F., & Spasojević-de Biré, A. (2014). Experimental demonstration of the carbamazepine crystallization from non-photochemical laser-induced nucleation in acetonitrile and methanol. Crystal Growth & Design, 14(7), 3286–3299. https://doi.org/10.1021/cg500163c

Article  CAS  Google Scholar 

Yoshikawa, H. Y., Murai, R., Adachi, H., Sugiyama, S., Maruyama, M., Takahashi, Y., Takano, K., Matsumura, H., Inoue, T., Murakami, S., Masuhara, H., & Mori, Y. (2014). Laser ablation for protein crystal nucleation and seeding. Chemical Society Reviews, 43(7), 2147–2158. https://doi.org/10.1039/C3CS60226E

Article  PubMed  CAS  Google Scholar 

Vogel, A., & Venugopalan, V. (2003). Mechanisms of pulsed laser ablation of biological tissues. Chemical Reviews, 103(2), 577–644. https://doi.org/10.1021/cr010379n

Article  PubMed  CAS  Google Scholar 

Sugiyama, T., Yuyama, K., & Masuhara, H. (2012). Laser trapping chemistry: From polymer assembly to amino acid crystallization. Accounts of Chemical Research, 45(11), 1946–1954. https://doi.org/10.1021/ar300161g

Article  PubMed  CAS  Google Scholar 

Sugiyama, T., & Masuhara, H. (2011). Laser-induced crystallization and crystal growth. Chemistry An Asian Journal, 6(11), 2878–2889. https://doi.org/10.1002/asia.201100105

Article  PubMed  CAS  Google Scholar 

Sugiyama, T., Adachi, T., & Masuhara, H. (2007). Crystallization of glycine by photon pressure of a focused CW laser beam. Chemistry Letters, 36(12), 1480–1481. https://doi.org/10.1246/cl.2007.1480

Article  CAS  Google Scholar 

Shih, T.-W., Hsu, C.-L., Chen, L.-Y., Huang, Y.-C., Chen, C.-J., Inoue, Y., & Sugiyama, T. (2021). Optical trapping-induced new polymorphism of β-Cyclodextrin in unsaturated solution. Crystal Growth & Design, 21(12), 6913–6923. https://doi.org/10.1021/acs.cgd.1c00822

Article  CAS  Google Scholar 

Cheng, A.-C., Pin, C., Sugiyama, T., & Sasaki, K. (2024). Enantioselectivity in chiral crystallization driven by the canonical and spin momentum forces of optical vortex beams. The Journal of Physical Chemistry C, 128(10), 4314–4320. https://doi.org/10.1021/acs.jpcc.3c08424

Article  CAS  Google Scholar 

Sugiyama, T., Lin, T.-M., Su, H.-T., Cheng, A.-C., & Sasaki, K. (2024). Enantioselective control in chiral crystallization of ethylenediamine sulfate using optical trapping with circularly polarized laser beams. The Journal of Chemical Physics. https://doi.org/10.1063/5.0186018

Article  PubMed  Google Scholar 

Hirota, S., Chiu, C.-L., Chang, C.-J., Lo, P.-H., Chen, T., Yang, H., Yamanaka, M., Mashima, T., Xie, C., Masuhara, H., & Sugiyama, T. (2022). Structural region essential for amyloid fibril formation in cytochrome c elucidated by optical trapping. Chemical Communications, 58(92), 12839–12842. https://doi.org/10.1039/D2CC04647D

Article  PubMed  CAS  Google Scholar 

Yuyama, K., Ueda, M., Nagao, S., Hirota, S., Sugiyama, T., & Masuhara, H. (2017). A single spherical assembly of protein amyloid fibrils formed by laser trapping. Angewandte Chemie International Edition, 56(24), 6739–6743. https://doi.or

Comments (0)

No login
gif