Modulating the phototoxicity and selectivity of a porphyrazine towards epidermal tumor cells by coordination with metal ions

Chilakamarthi, U., & Giribabu, L. (2017). Photodynamic therapy: Past, present and future. Chemical Record, 17, 775–802. https://doi.org/10.1002/tcr.201600121

Article  PubMed  CAS  Google Scholar 

Henderson, B. W., & Dougherty, T. J. (1992). How does photodynamic therapy work? Photochemistry and Photobiology, 55, 145–157. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x

Article  PubMed  CAS  Google Scholar 

Baptista, M. S., Cadet, J., Di Mascio, P., Ghogare, A. A., Greer, A., Hamblin, M. R., Lorente, C., Nunez, S. C., Ribeiro, M. S., Thomas, A. H., Vignoni, M., & Yoshimura, T. M. (2017). Type I and type ii photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochemistry and Photobiology, 93, 912–919. https://doi.org/10.1111/php.12716

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hu, W., Lin, Y., Zhang, X. F., Feng, M., Zhao, S., & Zhang, J. (2019). Heavy-atom-free charge transfer photosensitizers: Tuning the efficiency of BODIPY in singlet oxygen generation via intramolecular electron donor-acceptor interaction. Dyes and Pigments, 164, 139–147. https://doi.org/10.1016/j.dyepig.2019.01.019

Article  CAS  Google Scholar 

Wang, S., Gao, R., Zhou, F., & Selke, M. (2004). Nanomaterials and singlet oxygen photosensitizers: Potential applications in photodynamic therapy. Journal of Materials Chemistry. https://doi.org/10.1039/b311429e

Article  Google Scholar 

Songca, S. P. (2023). Combinations of photodynamic therapy with other minimally invasive therapeutic technologies against cancer and microbial infections. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms241310875

Article  PubMed  PubMed Central  Google Scholar 

Santos, K. L. M., Barros, R. M., da Silva Lima, D. P., Nunes, A. M. A., Sato, M. R., Faccio, R., de Lima Damasceno, B. P. G., & Oshiro-Junior, J. A. (2020). Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis and Photodynamic Therapy. https://doi.org/10.1016/j.pdpdt.2020.102032

Article  PubMed  PubMed Central  Google Scholar 

Stoean, B., Lupan, I., Cristea, C., Silion, M., Silaghi-Dumitrescu, L., Silaghi-Dumitrescu, R., & Gaina, L. I. (2024). Outcomes of folic acid esterification upon the properties of hydrophilic phenothiazinium dyes: New photosensitizers for antimicrobial photodynamic therapy. Journal of Photochemistry and Photobiology, A: Chemistry, 451, 115500. https://doi.org/10.1016/j.jphotochem.2024.115500

Article  CAS  Google Scholar 

Mfouo-Tynga, I. S., Dias, L. D., Inada, N. M., & Kurachi, C. (2021). Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis and Photodynamic Therapy, 34, 102091. https://doi.org/10.1016/j.pdpdt.2020.102091

Article  PubMed  CAS  Google Scholar 

Sandland, J., & Boyle, R. W. (2019). Photosensitizer Antibody-Drug Conjugates: Past, Present, and Future. Bioconjugate Chemistry, 30, 975–993. https://doi.org/10.1021/acs.bioconjchem.9b00055

Article  PubMed  CAS  Google Scholar 

Régagnon, T., Bugnicourt-Moreira, L., Ravaz, R., Idlas, P., Ramousset, L., Kouassi, M. C., Theodossiou, T., Berg, K., Menendez-Miranda, M., Gref, R., & Ladavière, C. (2023). Photoresponsive liposomes and lipoparticles by incorporating a photosensitizer agent in their lipid membrane. Journal of Photochemistry Photobiology A: Chemistry. https://doi.org/10.1016/j.jphotochem.2023.114765

Article  Google Scholar 

Lin, A. L., Fan, P. P., Liu, S. F., Chen, J. H., Zhao, Y. Y., Zheng, B. Y., Ke, M. R., & Huang, J. D. (2020). A phthalocyanine-based liposomal nanophotosensitizer with highly efficient tumor-targeting and photodynamic activity. Dyes and Pigments, 180, 108455. https://doi.org/10.1016/j.dyepig.2020.108455

Article  CAS  Google Scholar 

Derycke, A. S. L., & De Witte, P. A. M. (2004). Liposomes for photodynamic therapy. Advanced Drug Delivery Reviews, 56, 17–30. https://doi.org/10.1016/j.addr.2003.07.014

Article  PubMed  CAS  Google Scholar 

Gibot, L., Demazeau, M., Pimienta, V., Mingotaud, A. F., Vicendo, P., Collin, F., Martins-Froment, N., Dejean, S., Nottelet, B., Roux, C., & Lonetti, B. (2020). Role of polymer micelles in the delivery of photodynamic therapy agent to liposomes and cells. Cancers, 12, 1–22. https://doi.org/10.3390/cancers12020384

Article  CAS  Google Scholar 

Baskaran, R., Lee, J., & Yang, S. G. (2018). Clinical development of photodynamic agents and therapeutic applications. Biomaterials Research, 22, 1–8. https://doi.org/10.1186/s40824-018-0140-z

Article  CAS  Google Scholar 

Pereira, G. F. M., & Tasso, T. T. (2021). From cuvette to cells: How the central metal ion modulates the properties of phthalocyanines and porphyrazines as photosensitizers. Inorganica Chimica Acta, 519, 120271. https://doi.org/10.1016/j.ica.2021.120271

Article  CAS  Google Scholar 

Kim, D., Holten, D., & Gouterman, M. (1984). Evidence from picosecond transient absorption and kinetic studies of charge-transfer states in copper(II) porphyrins. Journal of the American Chemical Society, 106, 2793–2798. https://doi.org/10.1021/ja00322a012

Article  CAS  Google Scholar 

Uslan, C., & Şebnem Sesalan, B. (2012). Synthesis of novel DNA-interacting phthalocyanines. Dyes and Pigments, 94, 127–135. https://doi.org/10.1016/j.dyepig.2011.12.003

Article  CAS  Google Scholar 

Sobotta, L., Wierzchowski, M., Mierzwicki, M., Gdaniec, Z., Mielcarek, J., Persoons, L., Goslinski, T., & Balzarini, J. (2016). Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions. Journal of Inorganic Biochemistry, 155, 76–81. https://doi.org/10.1016/j.jinorgbio.2015.11.006

Article  PubMed  CAS  Google Scholar 

Keskin, B., Peksel, A., Avciata, U., & Gül, A. (2010). Radical scavenging and invitro antifungal activities of Cu(II) and Co(II) complexes of the t-butylphenyl derivative of porphyrazine. Journal of Coordination Chemistry, 63, 3999–4006. https://doi.org/10.1080/00958972.2010.524930

Article  CAS  Google Scholar 

Li, X., Peng, X., Zheng, B., Tang, J., Zhao, Y., Zheng, B., Ke, M., & Huang, J. (2018). New application of phthalocyanine molecules : From photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chemical Science, 9, 2098–2104. https://doi.org/10.1039/c7sc05115h

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aktas Kamiloglu, A., Direkel, S., Yalazan, H., Kantekin, H., & Acar, I. (2020). Octa- and tetra-substituted phthalocyanines with methoxyeugenol group: synthesis, characterization and in vitro antimicrobial activity. Journal Coordination Chemistry, 73, 1177–1190. https://doi.org/10.1080/00958972.2020.1761962

Article  CAS  Google Scholar 

Tasso, T. T., Schlothauer, J. C., Junqueira, H. C., Matias, T. A., Araki, K., Salvador, E. L., Antonio, F. C., de Mello, P. H., & Baptista, M. S. (2019). Photobleaching efficiency parallels the enhancement of membrane damage for porphyrazine photosensitizers. Journal of the American Chemical Society, 141, 15547–15556. https://doi.org/10.1021/jacs.9b05991

Article  PubMed  CAS  Google Scholar 

Leal, J. P. S. C., Bezerra, W. A., Das Chagas, R. P., Franco, C. H. J., Martins, F. T., Meireles, A. M., Antonio, F. C. T., Homem-De-Mello, P., Tasso, T. T., & Milani, J. L. S. (2021). Metal-Cocatalyst interaction governs the catalytic activity of MII-porphyrazines for chemical fixation of CO2. Inorganic Chemistry., 60, 12263–12273. https://doi.org/10.1021/acs.inorgchem.1c01462

Article  PubMed  CAS  Google Scholar 

Williams, A. T. R., Winfield, S. A., & Miller, J. N. (1983). Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. The Analyst, 108, 1067.

Article  CAS  Google Scholar 

Magde, D., Brannon, J. H., Cremers, T. L., & Olmsted, J. (1979). Absolute luminescence yield of cresyl violet. A standard for the red. The Journal of Physical Chemistry, 83(1979), 696–699. https://doi.org/10.1021/j100469a012

Article  CAS  Google Scholar 

Rossi, L. M., Silva, P. R., Vono, L. L. R., Fernandes, A. U., Tada, D. B., & Baptista, M. S. (2008). Protoporphyrin IX nanoparticle carrier: Preparation, optical properties and singlet oxygen generation. Langmuir, 24, 12534–12538. https://doi.org/10.1021/la800840k

Article  PubMed  CAS  Google Scholar 

Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. Journal Physical Chemical Reference Data, 22, 113–262. https://doi.org/10.1063/1.555934

Article  CAS  Google Scholar 

Liao, M. S., & Scheiner, S. (2002). Comparative study of metal-porphyrins, -porphyrazines, and -phthalocyanines. Journal of Computational Chemistry, 23, 1391–1403. https://doi.org/10.1002/jcc.10142

Comments (0)

No login
gif