Chilakamarthi, U., & Giribabu, L. (2017). Photodynamic therapy: Past, present and future. Chemical Record, 17, 775–802. https://doi.org/10.1002/tcr.201600121
Article PubMed CAS Google Scholar
Henderson, B. W., & Dougherty, T. J. (1992). How does photodynamic therapy work? Photochemistry and Photobiology, 55, 145–157. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
Article PubMed CAS Google Scholar
Baptista, M. S., Cadet, J., Di Mascio, P., Ghogare, A. A., Greer, A., Hamblin, M. R., Lorente, C., Nunez, S. C., Ribeiro, M. S., Thomas, A. H., Vignoni, M., & Yoshimura, T. M. (2017). Type I and type ii photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochemistry and Photobiology, 93, 912–919. https://doi.org/10.1111/php.12716
Article PubMed PubMed Central CAS Google Scholar
Hu, W., Lin, Y., Zhang, X. F., Feng, M., Zhao, S., & Zhang, J. (2019). Heavy-atom-free charge transfer photosensitizers: Tuning the efficiency of BODIPY in singlet oxygen generation via intramolecular electron donor-acceptor interaction. Dyes and Pigments, 164, 139–147. https://doi.org/10.1016/j.dyepig.2019.01.019
Wang, S., Gao, R., Zhou, F., & Selke, M. (2004). Nanomaterials and singlet oxygen photosensitizers: Potential applications in photodynamic therapy. Journal of Materials Chemistry. https://doi.org/10.1039/b311429e
Songca, S. P. (2023). Combinations of photodynamic therapy with other minimally invasive therapeutic technologies against cancer and microbial infections. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms241310875
Article PubMed PubMed Central Google Scholar
Santos, K. L. M., Barros, R. M., da Silva Lima, D. P., Nunes, A. M. A., Sato, M. R., Faccio, R., de Lima Damasceno, B. P. G., & Oshiro-Junior, J. A. (2020). Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis and Photodynamic Therapy. https://doi.org/10.1016/j.pdpdt.2020.102032
Article PubMed PubMed Central Google Scholar
Stoean, B., Lupan, I., Cristea, C., Silion, M., Silaghi-Dumitrescu, L., Silaghi-Dumitrescu, R., & Gaina, L. I. (2024). Outcomes of folic acid esterification upon the properties of hydrophilic phenothiazinium dyes: New photosensitizers for antimicrobial photodynamic therapy. Journal of Photochemistry and Photobiology, A: Chemistry, 451, 115500. https://doi.org/10.1016/j.jphotochem.2024.115500
Mfouo-Tynga, I. S., Dias, L. D., Inada, N. M., & Kurachi, C. (2021). Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis and Photodynamic Therapy, 34, 102091. https://doi.org/10.1016/j.pdpdt.2020.102091
Article PubMed CAS Google Scholar
Sandland, J., & Boyle, R. W. (2019). Photosensitizer Antibody-Drug Conjugates: Past, Present, and Future. Bioconjugate Chemistry, 30, 975–993. https://doi.org/10.1021/acs.bioconjchem.9b00055
Article PubMed CAS Google Scholar
Régagnon, T., Bugnicourt-Moreira, L., Ravaz, R., Idlas, P., Ramousset, L., Kouassi, M. C., Theodossiou, T., Berg, K., Menendez-Miranda, M., Gref, R., & Ladavière, C. (2023). Photoresponsive liposomes and lipoparticles by incorporating a photosensitizer agent in their lipid membrane. Journal of Photochemistry Photobiology A: Chemistry. https://doi.org/10.1016/j.jphotochem.2023.114765
Lin, A. L., Fan, P. P., Liu, S. F., Chen, J. H., Zhao, Y. Y., Zheng, B. Y., Ke, M. R., & Huang, J. D. (2020). A phthalocyanine-based liposomal nanophotosensitizer with highly efficient tumor-targeting and photodynamic activity. Dyes and Pigments, 180, 108455. https://doi.org/10.1016/j.dyepig.2020.108455
Derycke, A. S. L., & De Witte, P. A. M. (2004). Liposomes for photodynamic therapy. Advanced Drug Delivery Reviews, 56, 17–30. https://doi.org/10.1016/j.addr.2003.07.014
Article PubMed CAS Google Scholar
Gibot, L., Demazeau, M., Pimienta, V., Mingotaud, A. F., Vicendo, P., Collin, F., Martins-Froment, N., Dejean, S., Nottelet, B., Roux, C., & Lonetti, B. (2020). Role of polymer micelles in the delivery of photodynamic therapy agent to liposomes and cells. Cancers, 12, 1–22. https://doi.org/10.3390/cancers12020384
Baskaran, R., Lee, J., & Yang, S. G. (2018). Clinical development of photodynamic agents and therapeutic applications. Biomaterials Research, 22, 1–8. https://doi.org/10.1186/s40824-018-0140-z
Pereira, G. F. M., & Tasso, T. T. (2021). From cuvette to cells: How the central metal ion modulates the properties of phthalocyanines and porphyrazines as photosensitizers. Inorganica Chimica Acta, 519, 120271. https://doi.org/10.1016/j.ica.2021.120271
Kim, D., Holten, D., & Gouterman, M. (1984). Evidence from picosecond transient absorption and kinetic studies of charge-transfer states in copper(II) porphyrins. Journal of the American Chemical Society, 106, 2793–2798. https://doi.org/10.1021/ja00322a012
Uslan, C., & Şebnem Sesalan, B. (2012). Synthesis of novel DNA-interacting phthalocyanines. Dyes and Pigments, 94, 127–135. https://doi.org/10.1016/j.dyepig.2011.12.003
Sobotta, L., Wierzchowski, M., Mierzwicki, M., Gdaniec, Z., Mielcarek, J., Persoons, L., Goslinski, T., & Balzarini, J. (2016). Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions. Journal of Inorganic Biochemistry, 155, 76–81. https://doi.org/10.1016/j.jinorgbio.2015.11.006
Article PubMed CAS Google Scholar
Keskin, B., Peksel, A., Avciata, U., & Gül, A. (2010). Radical scavenging and invitro antifungal activities of Cu(II) and Co(II) complexes of the t-butylphenyl derivative of porphyrazine. Journal of Coordination Chemistry, 63, 3999–4006. https://doi.org/10.1080/00958972.2010.524930
Li, X., Peng, X., Zheng, B., Tang, J., Zhao, Y., Zheng, B., Ke, M., & Huang, J. (2018). New application of phthalocyanine molecules : From photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chemical Science, 9, 2098–2104. https://doi.org/10.1039/c7sc05115h
Article PubMed PubMed Central CAS Google Scholar
Aktas Kamiloglu, A., Direkel, S., Yalazan, H., Kantekin, H., & Acar, I. (2020). Octa- and tetra-substituted phthalocyanines with methoxyeugenol group: synthesis, characterization and in vitro antimicrobial activity. Journal Coordination Chemistry, 73, 1177–1190. https://doi.org/10.1080/00958972.2020.1761962
Tasso, T. T., Schlothauer, J. C., Junqueira, H. C., Matias, T. A., Araki, K., Salvador, E. L., Antonio, F. C., de Mello, P. H., & Baptista, M. S. (2019). Photobleaching efficiency parallels the enhancement of membrane damage for porphyrazine photosensitizers. Journal of the American Chemical Society, 141, 15547–15556. https://doi.org/10.1021/jacs.9b05991
Article PubMed CAS Google Scholar
Leal, J. P. S. C., Bezerra, W. A., Das Chagas, R. P., Franco, C. H. J., Martins, F. T., Meireles, A. M., Antonio, F. C. T., Homem-De-Mello, P., Tasso, T. T., & Milani, J. L. S. (2021). Metal-Cocatalyst interaction governs the catalytic activity of MII-porphyrazines for chemical fixation of CO2. Inorganic Chemistry., 60, 12263–12273. https://doi.org/10.1021/acs.inorgchem.1c01462
Article PubMed CAS Google Scholar
Williams, A. T. R., Winfield, S. A., & Miller, J. N. (1983). Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. The Analyst, 108, 1067.
Magde, D., Brannon, J. H., Cremers, T. L., & Olmsted, J. (1979). Absolute luminescence yield of cresyl violet. A standard for the red. The Journal of Physical Chemistry, 83(1979), 696–699. https://doi.org/10.1021/j100469a012
Rossi, L. M., Silva, P. R., Vono, L. L. R., Fernandes, A. U., Tada, D. B., & Baptista, M. S. (2008). Protoporphyrin IX nanoparticle carrier: Preparation, optical properties and singlet oxygen generation. Langmuir, 24, 12534–12538. https://doi.org/10.1021/la800840k
Article PubMed CAS Google Scholar
Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. Journal Physical Chemical Reference Data, 22, 113–262. https://doi.org/10.1063/1.555934
Liao, M. S., & Scheiner, S. (2002). Comparative study of metal-porphyrins, -porphyrazines, and -phthalocyanines. Journal of Computational Chemistry, 23, 1391–1403. https://doi.org/10.1002/jcc.10142
Comments (0)