Effect of crystallite size reduction and widening of optical phonon vibration due to AC variation on ZnO/Mg composites in implementation of methylene blue degradation

Ukaogo, P. O., Ewuzie, U., Onwuka, C. V. (2020). Environmental pollution: Causes, effects, and the remedies. INC.

Croxall, M., Lawrence, R., & Goh, C. (2023). Heterogeneous vs homogenous photocatalysis: What dominates in the degradation of methyl orange and methylene blue mixtures. Photochemical & Photobiological Sciences, 22, 1463–1474.

Article  CAS  Google Scholar 

Heryanto, H., & Tahir, D. (2023). Enhancing photocatalyst performance of magnetic surfaces covered by carbon clouds for textile dye degradation. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-023-08532-y

Article  Google Scholar 

Islam, M. R., Rahman, M., Farhad, S. F. U., & Podder, J. (2019). Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surfaces and Interfaces, 16, 120–126.

Article  CAS  Google Scholar 

Ahmad, I., Akhtar, M. S., Ahmed, E., & Ahmad, M. (2020). Highly efficient visible light driven photocatalytic activity of graphene and CNTs based Mg doped ZnO photocatalysts: A comparative study. Separation and Purification Technology, 245, 116892.

Article  CAS  Google Scholar 

Lin, J., Luo, Z., Liu, J., & Li, P. (2018). Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Materials Science in Semiconductor Processing, 87, 24–31.

Article  CAS  Google Scholar 

Heryanto, H., Mutmainna, I., Rahmi, M. H., Tenri Ola, A. T., Tang, N. F. R., Mohamed, M. A., & Tahir, D. (2024). Favourable peak diffraction shift moments as a function of Mg doping on ZnO matrix as a promising catalyst for methylene blue waste. Materials Chemistry and Physics, 313, 128772.

Article  CAS  Google Scholar 

Ivetić, T. B., Dimitrievska, M. R., Finčur, N. L., Crossed, L. R., Signačanin, D., Gúth, I. O., Abramović, B. F., & Lukić-Petrović, S. R. (2014). Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceramics International, 40, 1545–1552.

Article  Google Scholar 

Kamaraj, M., Srinivasan, N. R., Assefa, G., Adugna, A. T., & Kebede, M. (2020). Facile development of sunlit ZnO nanoparticles-activated carbon hybrid from pernicious weed as an operative nano-adsorbent for removal of methylene blue and chromium from aqueous solution: Extended application in tannery industrial wastewater. Environmental Technology & Innovation. https://doi.org/10.1016/j.eti.2019.100540

Article  Google Scholar 

Amaraweera, S. M., Gunathilake, C. A., Gunawardene, O. H. P., Dassanayake, R. S., Cho, E. B., & Du, Y. (2023). Carbon capture using porous silica materials. Nanomaterials. https://doi.org/10.3390/nano13142050

Article  PubMed  PubMed Central  Google Scholar 

Chiang, C., Chen, J., & Lin, J. (2020). Journal of environmental chemical engineering preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes. Journal of Environmental Chemical Engineering, 8, 103929.

Article  CAS  Google Scholar 

Campbell, R., Xiao, B., Mangwandi, C. Production of activated carbon from spent coffee grounds (SCG) for removal of hexavalent chromium from synthetic wastewater solutions.

Kumari, R., Singh, V., & Ravi, C. (2023). Enhanced performance of activated carbon-based supercapacitor derived from waste soybean oil with coffee ground additives. Materials Chemistry and Physics, 305, 127882.

Article  CAS  Google Scholar 

Anil, K., Vinod, I., & Shrivastava, S. (2019). Photocatalytic degradation of methylene blue using ZnO and 2 % Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Applied Sciences. https://doi.org/10.1007/s42452-019-1279-5

Article  Google Scholar 

Azfar, A. K., Kasim, M. F., Lokman, I. M., Rafaie, H. A. Mastuli, M. S. Comparative study on photocatalytic activity of transition metals (Ag and Ni)-doped ZnO nanomaterials synthesized via sol–gel method.

Garvasis, J., Prasad, A. R., Shamsheera, K. O., Jaseela, P. K., & Joseph, A. (2020). Efficient removal of Congo red from aqueous solutions using phytogenic aluminum sulfate nano coagulant. Materials Chemistry and Physics, 251, 123040.

Article  CAS  Google Scholar 

Sagheer, R., Khalil, M., Abbas, V., Kayani, Z. N., Tariq, U., & Ashraf, F. (2020). Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik (Stuttg). https://doi.org/10.1016/j.ijleo.2019.163428

Article  Google Scholar 

Šimonová, P., Pabst, W., & Cibulková, J. (2021). Crystallite size of pure tin oxide ceramics and its growth during sintering determined from XRD line broadening—A methodological case study and a practitioners’ guide. Ceramics International, 47, 35333–35347.

Article  Google Scholar 

Ameh, E. S. (2019). A review of basic crystallography and X-ray diffraction applications. The International Journal of Advanced Manufacturing Technology, 105, 3289–3302.

Article  Google Scholar 

Soares de Oliveira, L., de Oliveira Melquiades, M., da Costa Pinto, C., Trichês, D. M., & Michielon de Souza, S. (2020). Phase transformations in a NiTiGe system induced by high energy milling. Journal of Solid State Chemistry, 281, 121056.

Article  CAS  Google Scholar 

Amir, N., Tahir, D., & Heryanto, H. (2023). Synthesis, structural and optical characteristics of Fe3O4/activated carbon photocatalysts to adsorb pesticide waste. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-023-09910-w

Article  Google Scholar 

Suryani, S., & Heryanto and D. Tahir,. (2019). Stopping powers and inelastic mean free path from quantitative analysis of experimental REELS spectra for electrons in Ti, Fe, Ni, and Pd. Surface and Interface Analysis. https://doi.org/10.1002/sia.6713

Article  Google Scholar 

Brée, C., Demircan, A., & Steinmeyer, G. (2012). Kramers–Kronig relations and high-order nonlinear susceptibilities. Physical Review A. https://doi.org/10.1103/PhysRevA.85.033806

Article  Google Scholar 

Elhosiny Ali, H., Ganesh, V., Haritha, L., Aboraia, A. M., Hegazy, H. H., Butova, V., Soldatov, A. V., Algarni, H., Guda, A., Zahran, H. Y., Khairy, Y., & Yahia, I. S. (2021). Kramers–Kronig analysis of the optical linearity and nonlinearity of nanostructured Ga-doped ZnO thin films. Optics & Laser Technology. https://doi.org/10.1016/j.optlastec.2020.106691

Article  Google Scholar 

Abdullah, A. H., & Sherman, W. F. (1997). Kramers–Kronig type analysis of short spectral range reflection spectra. Vibrational Spectroscopy, 13, 133–142.

Article  CAS  Google Scholar 

Nadafan, M., & Tohidifar, M. R. (2020). Evaluation of structural, optical and dielectric properties of MWCNT-BaTiO3/silica ceramic nanocomposites. Ceramics International, 46, 12243–12248.

Article  CAS  Google Scholar 

Khorrami, Gh. H., Khorsand Zak, A., Kompany, A., & Yousefi, R. (2012). Optical and structural properties of X-doped (X=Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods. Ceramics International, 2012(38), 5683–5690.

Article  Google Scholar 

Mayerhöfer, T. G., Ivanovski, V., & Popp, J. (2022). Infrared refraction spectroscopy—Kramers–Kronig analysis revisited. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 270, 120799.

Article  PubMed  Google Scholar 

Suryani Heryanto, S., & Tahir, D. (2020). Stopping powers and inelastic mean free path from quantitative analysis of experimental REELS spectra for electrons in Ti, Fe, Ni, and Pd. Surface and Interface Analysis, 52, 16–22.

Article  Google Scholar 

Tahir, D., & Sari, N. H. (2015). Stopping powers and inelastic mean free path of 200eV–50keV electrons in polymer PMMA, PE, and PVC. Applied Radiation and Isotopes, 95, 59–62.

Article  PubMed  CAS  Google Scholar 

Zak, A. K., & Majid, W. H. A. (2011). Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol–gel method, in infrared region. Ceramics International, 37, 753–758.

Article  CAS  Google Scholar 

Nowak, D. (2017). The impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. Archives of Foundry Engineering. https://doi.org/10.1515/afe-2017-0140

Article  Google Scholar 

Hammouche, J., Daoudi, K., Columbus, S., Ziad, R., Ramachandran, K., & Gaidi, M. (2021). Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. Inorganic Chemistry Communications, 131, 108763.

Article  CAS  Google Scholar 

Norwick, B. (1970). in Developments in Applied Spectroscopy (pp. 252–279). Springer.

Book  Google Scholar 

Zelekew, O. A., Asefa, P., Sabir, F. K., & Duma, A. D. (2021). Eichhornia crassipes plant extract templated green synthesis of Cr 2O 3/ZnO composite catalyst for the degradation of organic dye. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3807243

Article  Google Scholar 

Shadan, N., Ziabari, A. A., Meraat, R., & Jalali, K. M. (2017). The effects of Mg incorporation and annealing temperature on the physicochemical properties and antibacterial activity against Listeria monocytogenes of ZnO nanoparticles. Pramana—Journal of Physics. https://doi.org/10.1007/s12043-016-1341-4

Article  Google Scholar 

Torres-Hernández, J. R., Ramírez-Morales, E., Rojas-Blanco, L., Pantoja-Enriquez, J., Oskam, G., Paraguay-Delgado, F., Escobar-Morales, B., Acosta-Alejandro, M., Díaz-Flores, L. L., & Pérez-Hernández, G. (2015). Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Materials Science in Semiconductor Processing, 37, 87–92.

Article  Google Scholar 

Choudhary, I., Shukla, R., Sharma, A., & Raina, K. K. (2020). Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide. Journal of Materials Science: Materials in Electronics, 31, 20033–20042.

Google Scholar 

Cyril, A., Senthamilselvan, G., Palanimurugan, A., & Dhanalakshmi, A. (2022). ZnO and alkaline earth metal (Mg) doped ZnO nanoparticles for antibacterial activity, structural and thermal studies. Journal of Advanced Scientific Research, 13, 190–193.

Comments (0)

No login
gif