Synthesis of new Michael acceptors with cinnamamide scaffold as potential anti-breast cancer agents: cytotoxicity and ADME in silico studies

National Cancer Institute. What is cancer? 2021. https://www.cancer.gov/about-cancer/understanding/what-is-cancer. Accessed April 25 2024.

Cancer Research UK. Types of cancer. 2023. https://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts/types-of-cancer. Accessed April 25 2024.

Chauhan G, Pathak DP, Ali F, Dubey P, Khasimbi S. In-vitro evaluation of isatin derivatives as potent anti-breast cancer agents against MCF-7, MDA MB 231, MDA-MB 435 and MDA-MB 468 breast cancers cell lines: a review. Anticancer Agents Med Chem. 2021;22:1883–96. https://doi.org/10.2174/1871520621666210903130152

Article  Google Scholar 

GLOBOCAN. Cancer tomorrow. 2024 https://gco.iarc.fr/tomorrow/en/dataviz/bars?cancers=20&single_unit=100000&sexes=0&types=0&populations=903_904_905_908_909_935_900&years=2040. Accessed April 25 2024.

Aggarwal S, Verma SS, Aggarwal S, Gupta SC. Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin Cancer Biol. 2021;68:8–20. https://doi.org/10.1016/j.semcancer.2019.09.012

Article  PubMed  Google Scholar 

Dahan M, Cortet M, Lafon C, Padilla F. Combination of focused ultrasound, immunotherapy, and chemotherapy: new perspectives in breast cancer therapy. J Ultrasound Med. 2023;42:559–73. https://doi.org/10.1002/jum.16053

Article  PubMed  Google Scholar 

Ventura-Salazar IAY, Palacios-Can FJ, González-Maya L, Sánchez-Carranza JN, Antunez-Mojica M, Razo-Hernández RS, et al. Finding a novel chalcone–cinnamic acid chimeric compound with antiproliferative activity against MCF-7 cell line using a free-wilson type approach. Molecules. 2023;28:5486. https://doi.org/10.3390/molecules28145486

Article  PubMed  PubMed Central  Google Scholar 

Holliday DL, Speirs V. Choosing correct breast cancer cell line for breast cancer research. Breast Cancer Res. 2011;13:1–7. https://doi.org/10.1186/bcr2889

Article  Google Scholar 

Liang ST, Chen C, Chen RX, Li R, Chen WL, Jiang GH, Du LL. Michael acceptor molecules in natural products and their mechanism of action. Front Pharmacol. 2022;13:1–17. https://doi.org/10.3389/fphar.2022.1033003

Article  Google Scholar 

Shah M, Murad W, Mubin S, Ullah O, Rehman NU, Rahman MH. Multiple health benefits of curcumin and its therapeutic potential. Environ Sci Pollut Res. 2022;29:43732–44. https://doi.org/10.1007/s11356-022-20137-w

Article  Google Scholar 

Laha B, Tiwari AR, Gravel E, Doris E, Namboothiri INN. The Michael donor-acceptor reactivity of curcumins in the synthesis of diverse multi-functional scaffolds. Org Biomol Chem. 2024;22:1346–59. https://doi.org/10.1039/d3ob01734f

Article  PubMed  Google Scholar 

Kostrzewa T, Wolosewicz K, Jamrozik M, Drzezdzon J, Sieminska J, Jaceeicz D, et al. Curcumin and its new derivatives : correlation between cytotoxicity against breast cancer cell Lines, degradation of PTP1B phosphatase and ROS generation. Int Mol Sci. 2021;22:1–22. https://doi.org/10.3390/ijms221910368

Article  Google Scholar 

Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem. 2015;98:69–114. https://doi.org/10.1016/j.ejmech.2015.05.004

Article  PubMed  Google Scholar 

Stompor M, Switalska M, Wietrzyk J. The influence of a single and double biotinylation of xanthohumol on its anticancer activity. Acta Biochim Pol. 2019;66:559–65. https://doi.org/10.18388/abp.2019_2876

Article  PubMed  Google Scholar 

K. Sahu N, S. Balbhadra S, Choudhary J, V. Kohli D. Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem. 2012;19:209–25. https://doi.org/10.2174/092986712803414132

Article  Google Scholar 

Guzman JD. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19:19292–349. https://doi.org/10.3390/molecules191219292

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Yun D, Yao J, Fu W, Huang F, Chen L, et al. Design, synthesis and QSAR study of novel isatin analogues inspired Michael acceptor as potential anticancer compounds. Eur J Med Chem. 2018;144:493–503. https://doi.org/10.1016/j.ejmech.2017.12.043

Article  PubMed  Google Scholar 

Ge YX, Wang YH, Zhang J, Yu ZP, Mu X, Song JL, et al. New cinnamic acid-pregenolone hybrids as potential antiproliferative agents: Design, synthesis and biological evaluation. Steroids. 2019;152:108499. https://doi.org/10.1016/j.steroids.2019.108499

Article  PubMed  Google Scholar 

Santos FS, do Vale JA, Santos LS, Gontijo TB, Lima GDA, de Oliveira LL, et al. Synthesis of novel cinnamides and a bis cinnamate bearing 1,2,3-triazole functionalities with antiproliferative and antimetastatic activities on melanoma cells. J Braz Chem Soc. 2021;32:2174–85. https://doi.org/10.21577/0103-5053.20210109

Article  Google Scholar 

Graminha AE, Honorato J, Dulcey LL, Godoy LR, Barbosa MF, Cominetti MR, et al. Evaluation of the biological potential of ruthenium(II) complexes with cinnamic acid. J Inorg Biochem.;. 2020;206:111021. https://doi.org/10.1016/j.jinorgbio.2020.111021

Article  PubMed  Google Scholar 

Atmaram Upare A, Gadekar PK, Sivaramakrishnan H, Naik N, Khedkar VM, Sarkar D, et al. Design, synthesis and biological evaluation of (E)-5-styryl-1,2,4-oxadiazoles as anti-tubercular agents. Bioorg Chem. 2019;86:507–12. https://doi.org/10.1016/j.bioorg.2019.01.054

Article  PubMed  Google Scholar 

Mijoba A, Fernandez-Moreira E, Parra-Giménez N, Espinosa-Tapia S, Blanco Z, Ramírez H, et al. Synthesis of benzocycloalkanone-based michael acceptors and biological activities as antimalarial and antitrypanosomal agents. Molecules. 2023;28. https://doi.org/10.3390/molecules28145569

Santos FSD, Freitas RPD, Freitas CSD, Mendonça DVC, Lage DP, Tavares GDSV, et al. Synthesis of 1,2,3-triazole-containing methoxylated cinnamides and their antileishmanial activity against the leishmania braziliensis species. Pharmaceuticals. 2023;16:1–20. https://doi.org/10.3390/ph16081113

Article  Google Scholar 

Dong HH, Wang YH, Peng XM, Zhou HY, Zhao F, Jiang YY, et al. Synergistic antifungal effects of curcumin derivatives as fungal biofilm inhibitors with fluconazole. Chem Biol Drug Des. 2021;97:1079–88. https://doi.org/10.1111/cbdd.13827

Article  PubMed  Google Scholar 

Egbujor MC, Buttari B, Profumo E, Telkoparan-Akillilar P, Saso L. An overview of NRF2-activating compounds bearing α,β-unsaturated moiety and their antioxidant effects. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23158466

Gaikwad N, Nanduri S, Madhavi YV. Cinnamamide: An insight into the pharmacological advances and structure–activity relationships. Eur J Med Chem. 2019;181:111561. https://doi.org/10.1016/j.ejmech.2019.07.064

Article  PubMed  Google Scholar 

Jackson PA, Widen JC, Harki DA, Brummond KM. Covalent modifiers: a chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-michael addition reactions. J Med Chem. 2017;60:839–85. https://doi.org/10.1021/acs.jmedchem.6b00788

Article  PubMed  Google Scholar 

Andrés CMC, Lastra JMP, de la, Munguira EB, Juan CA, Pérez-Lebeña E. Michael acceptors as anti-cancer compounds: coincidence or causality? Int. J. Mol. Sci. 2024;25:6099. https://doi.org/10.3390/ijms25116099

Article  PubMed  PubMed Central  Google Scholar 

Chaurasia M, Singh R, Sur S, Flora SJS A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol. 2023;14. https://doi.org/10.3389/fphar.2023.1184472

Fang L, Chu M, Yan C, Liu Y, Zhao Z. Palbociclib and Michael-acceptor hybrid compounds as CDK4/6 covalent inhibitors: Improved potency, broad anticancer spectrum and overcoming drug resistance. Bioorganic Med Chem. 2023;84:117263. https://doi.org/10.1016/j.bmc.2023.117263

Article  Google Scholar 

Deeks ED. Neratinib: First Global Approval. Drugs. 2017;77:1695–704. https://doi.org/10.1007/s40265-017-0811-4

Article  PubMed  Google Scholar 

Stanley A, Ashrafi GH, Seddon AM, Modjtahedi H. Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines. Sci Rep. 2017;7:1–15. https://doi.org/10.1038/s41598-017-04301-8

Article  Google Scholar 

Dungo RT, Keating GM. Afatinib: First global approval. Drugs. 2013;73:1503–15. https://doi.org/10.1007/s40265-013-0111-6

Article  PubMed  Google Scholar 

Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49. https://doi.org/10.1016/s1056-8719(00)00107-6

Article  PubMed  Google Scholar 

Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007;6:881–90. https://doi.org/10.1038/nrd2445

Article  PubMed  Google Scholar 

Wopereis S, Walter LO, Vieira DSC, Ribeiro AAB, Fernandes BL, Wilkens RS, et al. Evaluation of ER, PR and HER2 markers by flow cytometry for breast cancer diagnosis and prognosis. Clin Chim Acta. 2021;523:504–12. https://doi.org/10.1016/j.cca.2021.11.005

Article  PubMed  Google Scholar 

Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019;88:102925.

Comments (0)

No login
gif