In vivo CAR T cell therapy against angioimmunoblastic T cell lymphoma

Lachenal F, Berger F, Ghesquières H, Biron P, Hot A, Callet-Bauchu E, Chassagne C, Coiffier B, Durieu I, Rousset H, et al. Angioimmunoblastic T-cell lymphoma: clinical and laboratory features at diagnosis in 77 patients. Medicine (Baltimore). 2007;86:282–92. https://doi.org/10.1097/MD.0b013e3181573059.

Article  PubMed  Google Scholar 

de Leval L, Parrens M, Le Bras F, Jais J-P, Fataccioli V, Martin A, Lamant L, Delarue R, Berger F, Arbion F, et al. Angioimmunoblastic T-cell lymphoma is the most common T-cell lymphoma in two distinct French information data sets. Haematologica. 2015;100:e361-364. https://doi.org/10.3324/haematol.2015.126300.

Article  PubMed  PubMed Central  Google Scholar 

Mourad N, Mounier N, Brière J, Raffoux E, Delmer A, Feller A, Meijer CJLM, Emile J-F, Bouabdallah R, Bosly A, et al. Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood. 2008;111:4463–70. https://doi.org/10.1182/blood-2007-08-105759.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frizzera G, Moran EM, Rappaport H. Angio-immunoblastic lymphadenopathy. Diagnosis and clinical course. Am J Med. 1975;59:803–18. https://doi.org/10.1016/0002-9343(75)90466-0.

Article  PubMed  CAS  Google Scholar 

Alizadeh AA, Advani RH. Evaluation and management of angioimmunoblastic T-cell lymphoma: a review of current approaches and future strategies. Clin Adv Hematol Oncol. 2008;6:899–909.

PubMed  Google Scholar 

Vose J, Armitage J, Weisenburger D, International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30. https://doi.org/10.1200/JCO.2008.16.4558.

Article  PubMed  Google Scholar 

Laurent C, Baron M, Amara N, Haioun C, Dandoit M, Maynadié M, Parrens M, Vergier B, Copie-Bergman C, Fabiani B, et al. Impact of Expert Pathologic Review of Lymphoma Diagnosis: Study of Patients From the French Lymphopath Network. J Clin Oncol. 2017;35:2008–17. https://doi.org/10.1200/JCO.2016.71.2083.

Article  PubMed  Google Scholar 

Botros N, Cerroni L, Shawwa A, Green PJ, Greer W, Pasternak S, Walsh NM. Cutaneous manifestations of angioimmunoblastic T-cell lymphoma: clinical and pathological characteristics. Am J Dermatopathol. 2015;37:274–83. https://doi.org/10.1097/DAD.0000000000000144.

Article  PubMed  Google Scholar 

Lunning MA, Vose JM. Angioimmunoblastic T-cell lymphoma: the many-faced lymphoma. Blood. 2017;129:1095–102. https://doi.org/10.1182/blood-2016-09-692541.

Article  PubMed  CAS  Google Scholar 

Zheng J, Wang Z, Pan X, Zhang Z, Li H, Deng X, Liu P, Zhang Q, Na F, Chen C, et al. DNMT3AR882H accelerates angioimmunoblastic T-cell lymphoma in mice. Oncogene. 2023;42:1940–50. https://doi.org/10.1038/s41388-023-02699-2.

Article  PubMed  CAS  Google Scholar 

Cortes JR, Ambesi-Impiombato A, Couronné L, Quinn SA, Kim CS, da Silva Almeida AC, West Z, Belver L, Martin MS, Scourzic L, et al. RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis. Cancer Cell. 2018;33:259-273.e7. https://doi.org/10.1016/j.ccell.2018.01.001.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ng SY, Brown L, Stevenson K, deSouza T, Aster JC, Louissaint A, Weinstock DM. RhoA G17V is sufficient to induce autoimmunity and promotes T-cell lymphomagenesis in mice. Blood. 2018;132:935–47. https://doi.org/10.1182/blood-2017-11-818617.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leca J, Lemonnier F, Meydan C, Foox J, El Ghamrasni S, Mboumba D-L, Duncan GS, Fortin J, Sakamoto T, Tobin C, et al. IDH2 and TET2 mutations synergize to modulate T Follicular Helper cell functional interaction with the AITL microenvironment. Cancer Cell. 2023;41:323-339.e10. https://doi.org/10.1016/j.ccell.2023.01.003.

Article  PubMed  CAS  Google Scholar 

Mhaidly R, Krug A, Gaulard P, Lemonnier F, Ricci J-E, Verhoeyen E. New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP. Oncogenesis. 2020;9:73. https://doi.org/10.1038/s41389-020-00259-x.

Article  PubMed  PubMed Central  Google Scholar 

Mondragón L, Mhaidly R, De Donatis GM, Tosolini M, Dao P, Martin AR, Pons C, Chiche J, Jacquin M, Imbert V, et al. GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell. 2019;36:268-287.e10. https://doi.org/10.1016/j.ccell.2019.07.008.

Article  PubMed  CAS  Google Scholar 

de Leval L, Rickman DS, Thielen C, de Reynies A, Huang Y-L, Delsol G, Lamant L, Leroy K, Brière J, Molina T, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109:4952–63. https://doi.org/10.1182/blood-2006-10-055145.

Article  PubMed  CAS  Google Scholar 

Krug A, Tosolini M, Madji Hounoum B, Fournié J-J, Geiger R, Pecoraro M, Emond P, Gaulard P, Lemonnier F, Ricci J-E, et al. Inhibition of choline metabolism in an angioimmunoblastic T-cell lymphoma preclinical model reveals a new metabolic vulnerability as possible target for treatment. J Exp Clin Cancer Res. 2024;43:43. https://doi.org/10.1186/s13046-024-02952-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Finck AV, Blanchard T, Roselle CP, Golinelli G, June CH. Engineered cellular immunotherapies in cancer and beyond. Nat Med. 2022;28:678–89. https://doi.org/10.1038/s41591-022-01765-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619:707–15. https://doi.org/10.1038/s41586-023-06243-w.

Article  PubMed  CAS  Google Scholar 

Brookens SK, Posey AD. Chimeric Antigen Receptor T-Cell Therapy: Current Perspective on T Cell-Intrinsic, T Cell-Extrinsic, and Therapeutic Limitations. Cancer J. 2023;29:28–33. https://doi.org/10.1097/PPO.0000000000000636.

Article  PubMed  CAS  Google Scholar 

Caruso HG, Tanaka R, Liang J, Ling X, Sabbagh A, Henry VK, Collier TL, Heimberger AB. Shortened ex vivo manufacturing time of EGFRvIII-specific chimeric antigen receptor (CAR) T cells reduces immune exhaustion and enhances antiglioma therapeutic function. J Neurooncol. 2019;145:429–39. https://doi.org/10.1007/s11060-019-03311-y.

Article  PubMed  CAS  Google Scholar 

Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, Klichinsky M, Shestova O, Patel PR, Kulikovskaya I, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018;24:1499–503. https://doi.org/10.1038/s41591-018-0201-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Girard-Gagnepain A, Amirache F, Costa C, Lévy C, Frecha C, Fusil F, Nègre D, Lavillette D, Cosset F-L, Verhoeyen E. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood. 2014;124:1221–31. https://doi.org/10.1182/blood-2014-02-558163.

Article  PubMed  CAS  Google Scholar 

Bender RR, Muth A, Schneider IC, Friedel T, Hartmann J, Plückthun A, Maisner A, Buchholz CJ. Receptor-targeted nipah virus glycoproteins improve cell-type selective gene delivery and reveal a preference for membrane-proximal cell attachment. PLoS Pathog. 2016;12:e1005641. https://doi.org/10.1371/journal.ppat.1005641.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Michels A, Ho N, Buchholz CJ. Precision medicine: In vivo CAR therapy as a showcase for receptor-targeted vector platforms. Mol Ther. 2022;30:2401–15. https://doi.org/10.1016/j.ymthe.2022.05.018.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Witting SR, Vallanda P, Gamble AL. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction. Gene Ther. 2013;20:997–1005. https://doi.org/10.1038/gt.2013.23.

留言 (0)

沒有登入
gif