Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer

Nair L, Mukherjee S, Kaur K, Murphy CM, Ravichandiran V, Roy S, et al. Multi compartmental 3D breast cancer disease model–recapitulating tumor complexity in in-vitro. In: Biochim Biophys Acta gen subj. Elsevier B.V; 2023.

Google Scholar 

Rosenbluth JM, Schackmann RCJ, Gray GK, Selfors LM, Li CMC, Boedicker M, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat Commun. 2020;11.

Goldhammer N, Kim J, Timmermans-Wielenga V, Petersen OW. Characterization of organoid cultured human breast cancer. Breast Cancer Res. 2019;21.

Djomehri SI, Burman B, Gonzalez ME, Takayama S, Kleer CG. A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer. J Cell Commun Signal. 2019;13:129–43.

Article  PubMed  Google Scholar 

Azimian Zavareh V, Rafiee L, Sheikholeslam M, Shariati L, Vaseghi G, Savoji H, et al. Three-dimensional in vitro models: a promising tool to scale-up breast Cancer research. ACS Biomater Sci Eng Am Chemi Soc. 2022;8:4648–72.

Article  CAS  Google Scholar 

Velasco V, Shariati SA, Esfandyarpour R. Microtechnology-based methods for organoid models. In: Microsyst Nanoeng. Springer Nature; 2020.

Google Scholar 

Kaur S, Kaur I, Rawal P, Tripathi DM, Vasudevan A. Non-matrigel scaffolds for organoid cultures. Cancer Lett. Elsevier Ireland Ltd; 2021. p. 58–66.

Google Scholar 

Andrews MG, Kriegstein AR. Challenges of Organoid Research. 2022. 10.1146/annurev-neuro-111020 .

Book  Google Scholar 

Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol Taylor and Francis Ltd; 2022. p. 468–86.

Google Scholar 

Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, Lin L, et al. Organoids. Nat Rev Methods Primers. 2022;2.

Valdoz JC, Johnson BC, Jacobs DJ, Franks NA, Dodson EL, Sanders C, et al. The ECM: to scaffold, or not to scaffold, that is the question. Int J Mol Sci MDPI. 2021;22.

Liu J, Long H, Zeuschner D, Räder AFB, Polacheck WJ, Kessler H, et al. Synthetic extracellular matrices with tailored adhesiveness and degradability support lumen formation during angiogenic sprouting. Nat Commun. 2021;12.

Koorman T, Jansen KA, Khalil A, Haughton PD, Visser D, Rätze MAK, et al. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene. 2022;41:2458–69.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu K, Mihaila SM, Rowan A, Oosterwijk E, Kouwer PHJ. Synthetic extracellular matrices with nonlinear elasticity regulate cellular organization. Biomacromolecules. 2019;20:826–34.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rijal G, Li W. 3D scaffolds in breast cancer research. Biomaterials. Elsevier Ltd; 2016. p. 135–56.

Google Scholar 

Campbell JJ, Husmann A, Hume RD, Watson CJ, Cameron RE. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials. 2017;114:34–43.

Article  PubMed  CAS  Google Scholar 

Abbas Y, Brunel LG, Hollinshead MS, Fernando RC, Gardner L, Duncan I, et al. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus. 2020;10.

Redmond J, McCarthy H, Buchanan P, Levingstone TJ, Dunne NJ. Advances in biofabrication techniques for collagen-based 3D in vitro culture models for breast cancer research. Mater Sci Eng C. 2021;122.

Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers (Basel) MDPI AG. 2016;8.

Rousselle P, Scoazec JY. Laminin 332 in cancer: when the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol Academic Press. 2020;62:149–65.

Article  CAS  Google Scholar 

Smuczek B, Santos EDS, Siqueira AS, JJV P, Freitas VM, Jaeger RG. The laminin-derived peptide C16 regulates GPNMB expression and function in breast cancer. Exp Cell Res. 2017;358:323–34.

Article  PubMed  CAS  Google Scholar 

Furuta S, Ren G, Mao J-H, Bissell MJ. Laminin signals initiate the reciprocal loop that informs breast-specific gene expression and homeostasis by activating NO, p53 and microRNAs. https://doi.org/10.7554/eLife.26148.001.

Mohammadpour A, Arjmand S, Lotfi AS, Tavana H, Kabir-Salmani M. Promoting hepatogenic differentiation of human mesenchymal stem cells using a novel laminin-containing gelatin cryogel scaffold. Biochem Biophys Res Commun. 2018;507:15–21.

Article  PubMed  CAS  Google Scholar 

Qiu X, Tan H, Fu D, Zhu Y, Zhang J. Laminin is over expressed in breast cancer and facilitate cancer cell metastasis. J Cancer Res Ther. 2018;14:S1170–2.

Article  PubMed  CAS  Google Scholar 

Kwon SY, Chae SW, Wilczynski SP, Arain A, Carpenter, Philip M. Laminin 332 expression in breast carcinoma. Appl Immunohistochem Mol Morphol. 2012;20(2):159–64. https://doi.org/10.1097/PAI.0b013e3182329e8f.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater. 2015;4:2530–56.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blanco-Fernandez B, Ibañez-Fonseca A, Orbanic D, Ximenes-Carballo C, Perez-Amodio S, Rodríguez-Cabello JC, et al. Elastin-like Recombinamer hydrogels as platforms for breast Cancer modeling. Biomacromolecules. 2022:24.

Ryan AJ, O’Brien FJ. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials. 2015;73:296–307.

Article  PubMed  CAS  Google Scholar 

Leach JB, Wolinsky JB, Stone PJ, Wong JY. Crosslinked α-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater. 2005;1:155–64.

Article  PubMed  Google Scholar 

Hinds MT, Rowe RC, Ren Z, Teach J, Wu PC, Kirkpatrick SJ, et al. Development of a reinforced porcine elastin composite vascular scaffold. J Biomed Mater Res A. 2006;77:458–69.

Article  PubMed  Google Scholar 

Dalton CJ, Lemmon CA. Fibronectin: molecular structure, fibrillar structure and mechanochemical signaling. In: Cells. MDPI; 2021.

Google Scholar 

Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. Japanese Dental Science Review Elsevier Ltd; 2020. p. 50–5.

Google Scholar 

Shinde A, Libring S, Alpsoy A, Abdullah A, Schaber JA, Solorio L, et al. Autocrine fibronectin inhibits breast cancer metastasis. Mol Cancer Res. 2018;16:1579–89.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Franchi M, Piperigkou Z, Karamanos KA, Franchi L, Masola V. Extracellular matrix-mediated breast Cancer cells morphological alterations, invasiveness, and microvesicles/exosomes release. Cells. 2020;9.

Singh N, Patel K, Navalkar A, Kadu P, Datta D, Chatterjee D, et al. Amyloid fibril-based hydrogels for high-throughput tumor spheroid modeling. https://doi.org/10.1101/2020.12.28.424634.

Ambesi A, Maddali P, McKeown-Longo PJ. Fibronectin functions as a selective agonist for distinct toll-like receptors in triple-negative breast Cancer. Cells. 2022;11.

Barney LE, et al. Tumor cell–organized fibronectin maintenance of a dormant breast cancer population. Sci Adv. 2020;6:eaaz4157. https://doi.org/10.1126/sciadv.aaz4157.

Clegg J, Koch MK, Thompson EW, Haupt LM, Kalita-de Croft P, Bray LJ. Three-dimensional models as a new frontier for studying the role of proteoglycans in the Normal and malignant breast microenvironment. Front Cell Dev Biol Front Media S.A. 2020;8.

Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D cell culture systems: tumor application, advantages, and disadvantages. Int J Mol Sci. MDPI.; 2021.

Google Scholar 

Nikitovic D, Kouvidi K, Voudouri K, Berdiaki A, Karousou E, Passi A, et al. The motile breast cancer phenotype roles of proteoglycans/glycosaminoglycans. Biomed Res Int. Hindawi Publishing Corporation; 2014.

Book  Google Scholar 

Zhang Y, Tang C, Span PN, Rowan AE, Aalders TW, Schalken JA, et al. Polyisocyanide hydrogels as a tunable platform for mammary gland organoid formation. Adv Sci. 2020;7.

Malakpour-Permlid A, Buzzi I, Hegardt C, Johansson F, Oredsson S. Identification of extracellular matrix proteins secreted by human dermal fibroblasts cultured in 3D electrospun scaffolds. Sci Rep. 2021;11.

Kyburz KA, Anseth KS. Synthetic mimics of the extracellular matrix: how simple is complex enough? Ann Biomed Eng. 2015;43:489–500.

Article  PubMed  PubMed Central  Google Scholar 

Tang RZ, Liu XQ. Biophysical cues of in vitro biomaterials-based artificial extracellular matrix guide cancer cell plasticity. Mater Today Bio. 2023;19.

Lee HJ, Mun S, Pham DM, Kim P. Extracellular matrix-based hydrogels to tailoring tumor Organoids. ACS Biomater Sci Eng. American Chemical Society; 2021. p. 4128–35.

Google Scholar 

Weiss MS, Bernabé BP, Shikanov A, Bluver DA, Mui MD, Shin S, et al. The impact of adhesion peptides within hydrogels on the phenotype and signaling of normal and cancerous mammary epithelial cells. Biomaterials. 2012;33:3548–59.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brösicke N, Sallouh M, Prior LM, Job A, Weberskirch R, Faissner A. Extracellular matrix glycoprotein-derived synthetic peptides differentially modulate glioma and sarcoma cell migration. Cell Mol Neurobiol. 2015;35:741–53.

Article  PubMed  Google Scholar 

Sthijns MMJPE, van Blitterswijk CA, LaPointe VLS. Synthetic materials that affect the extracellular matrix via cellular metabolism and responses to a metabolic state. Front Bioeng Biotechnol. 2021;9

Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci Hindawi Limited; 2011.

Book  Google Scholar 

Bock N, Forouz F, Hipwood L, Clegg J, Jeffery P, Gough M, et al. GelMA, click-chemistry gelatin and bioprinted polyethylene glycol-based hydrogels as 3D ex vivo drug testing platforms for patient-derived breast Cancer Organoids. Pharmaceutics. 2023;15.

Quarta A, Gallo N, Vergara D, Salvatore L, Nobile C, Ragusa A, et al. Investigation on the composition of agarose–collagen i blended hydrogels as matrices for the growth of spheroids from breast cancer cell lines. Pharmaceutics. 2021;13.

Rijal G, Bathula C, Li W. Application of synthetic polymeric scaffolds in breast Cancer 3D tissue cultures and animal tumor models. Int J Biomater. 2017;2017.

Heo JH, Kang D, Seo SJ, Jin Y. Engineering the extracellular matrix for organoid culture. Int J Stem Cells. 2022;15:60–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ligorio C, Mata A. Synthetic extracellular matrices with function-encoding peptides. Nature reviews Bioengineering; 2023.

Book  Google Scholar 

Kamatar A, Gunay G, Acar H. Natural and synthetic biomaterials for engineering multicellular tumor spheroids. Polymers (Basel) MDPI AG; 2020. p. 1–23.

Google Scholar 

Etayash H, Jiang K, Azmi S, Thundat T, Kaur K. Real-time detection of breast cancer cells using peptide-functionalized microcantilever arrays. Sci Rep. 2015;5.

Terzaki K, Kalloudi E, Mossou E, Mitchell EP, Forsyth VT, Rosseeva E, et al. Mineralized self-assembled peptides on 3D laser-made scaffolds: a new route toward “scaffold on scaffold” hard tissue engineering. Biofabrication. 2013;5.

Unal AZ, West JL. Synthetic ECM: bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug Chem. 2020;31:2253–71.

Article  PubMed  CAS  Google Scholar 

Kumar P, Mangla B, Javed S, Ahsan W, Musyuni P, Sivadasan D, et al. A review of nanomaterials from synthetic and natural molecules for prospective breast cancer nanotherapy. Front Pharmacol Frontiers Media SA; 2023.

Book  Google Scholar 

Buchmann B, Engelbrecht LK, Fernandez P, Hutterer FP, Raich MK, Scheel CH, et al. Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids. Nat Commun. 2021;12.

Campaner E, Zannini A, Santorsola M, Bonazza D, Bottin C, Cancila V, et al. Breast cancer organoids model patient-specific response to drug treatment. Cancers (Basel). 2020;12:1–19.

Article  Google Scholar 

Goel R, Gulwani D, Upadhyay P, Sarangthem V, Singh TD. Unsung versatility of elastin-like polypeptide inspired spheroid fabrication: a review. Int J Biol Macromol Elsevier BV; 2023.

Book  Google Scholar 

Heinz A. Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol Taylor and Francis Ltd; 2020. p. 252–73.

Google Scholar 

Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Translational Research. Elsevier Inc.; 2022. p. 117–36.

留言 (0)

沒有登入
gif