Akdag Cayli Y, Sahin S, Buttini F, Balducci AG, Montanari S, Vural I, Oner L. Dry powders for the inhalation of ciprofloxacin or levofloxacin combined with a mucolytic agent for cystic fibrosis patients. Drug Dev Ind Pharm. 2017. https://doi.org/10.1080/03639045.2017.1318902.
Barazesh A, Gilani K, Rouini M, Barghi MA. Effect of pH and leucine concentration on aerosolization properties of carrier-free formulations of levofloxacin. Eur J Pharm Sci. 2018. https://doi.org/10.1016/j.ejps.2018.03.002.
Palmer LB, Smaldone GC. Reduction of bacterial resistance with inhaled antibiotics in the intensive care unit. Am J Respir Crit Care Med. 2014. https://doi.org/10.1164/rccm.201312-2161OC.
Article PubMed PubMed Central Google Scholar
Misra A, Hickey AJ, Rossi C, Borchard G, Terada H, Makino K, Fourie PB, Colombo P. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis. 2011. https://doi.org/10.1016/j.tube.2010.08.009.
Smith S, Rowbotham NJ, Charbek E. Inhaled antibiotics for pulmonary exacerbations in cystic fibrosis. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD008319.pub3.
Article PubMed PubMed Central Google Scholar
Taccetti G, Francalanci M, Pizzamiglio G, Messore B, Carnovale V, Cimino G, Cipolli M. Cystic fibrosis: recent insights into inhaled antibiotic treatment and future perspectives. Antibiotics. 2021. https://doi.org/10.3390/antibiotics10030338.
Article PubMed PubMed Central Google Scholar
Antoniu S. Novel inhaled combined antibiotic formulations in the treatment of Pseudomonas aeruginosa airways infections in cystic fibrosis. Expert Rev Anti-Infect Ther. 2015. https://doi.org/10.1586/14787210.2015.1041925.
Elborn JS, Vataire AL, Fukushima A, Aballea S, Khemiri A, Moore C, Medic G, Hemels ME. Comparison of inhaled antibiotics for the treatment of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis: systematic literature review and network meta-analysis. Clin Ther. 2016. https://doi.org/10.1016/j.clinthera.2016.08.014.
Elborn JS, Flume PA, Cohen F, Loutit J, VanDevanter DR. Safety and efficacy of prolonged levofloxacin inhalation solution (APT-1026) treatment for cystic fibrosis and chronic Pseudomonas aeruginosa airway infection. J Cyst Fibros. 2016. https://doi.org/10.1016/j.jcf.2016.01.005.
Gaspar MC, Pais AA, Sousa JJ, Brillaut J, Olivier JC. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm. 2019. https://doi.org/10.1016/j.ijpharm.2018.12.005.
Longest W, Spence B, Hindle M. Devices for improved delivery of nebulized pharmaceutical aerosols to the lungs. J Aerosol Med Pulm Drug Deliv. 2019. https://doi.org/10.1089/jamp.2018.1508.
Article PubMed PubMed Central Google Scholar
Heijerman H, Westerman E, Conway S, Touw D, Gerd Döring for the consensus working group. Inhaled medication and inhalation devices for lung disease in patients with cystic fibrosis: a European consensus. J Cyst Fibros. 2009. https://doi.org/10.1016/j.jcf.2009.04.005.
Tiddens HA, Bos AC, Mouton JW, Devadason S, Janssens HM. Inhaled antibiotics: dry or wet? Eur Respir J. 2014. https://doi.org/10.1183/09031936.00090314.
Chang RY, Wallin M, Lin Y, Leung SS, Wang H, Morales S, Chan HK. Phage therapy for respiratory infections. Adv Drug Deliv Rev. 2018. https://doi.org/10.1016/j.addr.2018.08.001.
Article PubMed PubMed Central Google Scholar
Li J, Zheng H, Leung SS. Pulmonary delivery of emerging antibacterials for bacterial lung infections treatment. Pharm Res. 2023. https://doi.org/10.1007/s11095-022-03379-8.
Article PubMed PubMed Central Google Scholar
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277.
Cheow WS, Chang MW, Hadinoto K. Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res. 2010. https://doi.org/10.1007/s11095-010-0142-6.
Zhou QT, Leung SS, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015. https://doi.org/10.1016/j.addr.2014.10.022.
Gontijo AV, Brillault J, Grégoire N, Lamarche I, Gobin P, Couet W, Marchand S. Biopharmaceutical characterization of nebulized antimicrobial agents in rats: 1. Ciprofloxacin, moxifloxacin, and grepafloxacin. Antimicrob Agents Chemother. 2014. https://doi.org/10.1128/aac.02818-14.
Stass H, Weimann B, Nagelschmitz J, Rolinck-Werninghaus C, Staab D. Tolerability and pharmacokinetic properties of ciprofloxacin dry powder for inhalation in patients with cystic fibrosis: a phase I, randomized, dose-escalation study. Clin Ther. 2013. https://doi.org/10.1016/j.clinthera.2013.08.003.
Brillault J, Tewes F. Control of the lung residence time of highly permeable molecules after nebulization: example of the fluoroquinolones. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12040387.
Article PubMed PubMed Central Google Scholar
Uivarosi V. Metal complexes of quinolone antibiotics and their applications: an update. Molecules. 2013. https://doi.org/10.3390/molecules180911153.
Article PubMed PubMed Central Google Scholar
Stockmann C, Sherwin CM, Ampofo K, Spigarelli MG. Development of levofloxacin inhalation solution to treat Pseudomonas aeruginosa in patients with cystic fibrosis. Ther Adv Respir Dis. 2014. https://doi.org/10.1177/1753465813508445.
Du J, Du P, Smyth HD. Hydrogels for controlled pulmonary delivery. Ther Deliv. 2013. https://doi.org/10.4155/tde.13.90.
Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 2015. https://doi.org/10.1016/j.drudis.2014.09.020.
Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014. https://doi.org/10.1016/j.addr.2014.05.017.
Li W, Wei H, Liu Y, Li S, Wang G, Guo T, Han H. An in situ reactive spray-drying strategy for facile preparation of starch-chitosan based hydrogel microspheres for water treatment application. Chem Eng Process Process Intensif. 2021. https://doi.org/10.1016/j.cep.2021.108548.
Saigal A, Ng WK, Tan RB, Chan SY. Development of controlled release inhalable polymeric microspheres for treatment of pulmonary hypertension. Int J Pharm. 2013. https://doi.org/10.1016/j.ijpharm.2013.04.011.
Gallo L, Bucalá V, Ramírez-Rigo MV. Formulation and characterization of polysaccharide microparticles for pulmonary delivery of sodium cromoglycate. AAPS PharmSciTech. 2017. https://doi.org/10.1208/s12249-016-0633-9.
Pandey SP, Shukla T, Dhote VK, Mishra DK, Maheshwari R, Tekade RK. Use of polymers in controlled release of active agents. In: Tekade RK, editor. Basic fundamentals of drug delivery. Academic Press; 2019. pp.113–172. https://doi.org/10.1016/B978-0-12-817909-3.00004-2.
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJ, Ahmed MB. Recent developments of carboxymethyl cellulose. Polymers. 2021. https://doi.org/10.3390/polym13081345.
Article PubMed PubMed Central Google Scholar
Xu EY, Guo J, Xu Y, Li HY, Seville PC. Influence of excipients on spray-dried powders for inhalation. Powder Technol. 2014. https://doi.org/10.1016/j.powtec.2014.02.033.
Feng AL, Boraey MA, Gwin MA, Finlay PR, Kuehl PJ, Vehring R. Mechanistic models facilitate efficient development of leucine containing microparticles for pulmonary drug delivery. Int J Pharm. 2011. https://doi.org/10.1016/j.ijpharm.2011.02.049.
Boraey MA, Hoe S, Sharif H, Miller DP, Lechuga-Ballesteros D, Vehring R. Improvement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol–water cosolvent system. Powder Technol. 2013. https://doi.org/10.1016/j.powtec.2012.02.047.
Gomez M, McCollum J, Wang H, Ordoubadi M, Jar C, Carrigy NB, Barona D, Tetreau I, Archer M, Gerhardt A, Press C. Development of a formulation platform for a spray-dried, inhalable tuberculosis vaccine candidate. Int J Pharm. 2021. https://doi.org/10.1016/j.ijpharm.2020.120121.
Shahin HI, Vinjamuri BP, Mahmoud AA, Shamma
Comments (0)