Yu T, Glennon L, Fenelon O, Breslin CB. Electrodeposition of bismuth at a graphene modified carbon electrode and its application as an easily regenerated sensor for the electrochemical determination of the antimicrobial drug metronidazole. Talanta. 2023;251: 123758.
Article CAS PubMed Google Scholar
Liu W, Zhang J, Li C, Tang L, Zhang Z, Yang M. A novel composite film derived from cysteic acid and PDDA-functionalized graphene: enhanced sensing material for electrochemical determination of metronidazole. Talanta. 2013;104:204–11.
Article CAS PubMed Google Scholar
Hu X, Zhang Y, Zeng T, Wan Q, Wu K, Yang N. A novel electrochemical sensor based on MnOOH nanorod/expanded graphite for sensitive monitoring of metronidazole. Diam Relat Mater. 2022;128: 109303.
Sadeghi M, Shabani-Nooshabadi M. Use of a nano-porous gold film electrode modified with chitosan/polypyrrole for electrochemical determination of metronidazole in the presence of acetaminophen. Chemosphere. 2022;307: 135722.
Article CAS PubMed Google Scholar
Baikeli Y, Mamat X, Wumaer M, Muhetaer M, Aisa HA, Hu G. Electrochemical determination of metronidazole using a glassy carbon electrode modified with nanoporous bimetallic carbon derived from a ZnCo-based metal-organic framework. J Electrochem Soc. 2020;167: 116513.
Hena S, Gutierrez L, Croué JP. Removal of metronidazole from aqueous media by C. vulgaris. J Hazard Mater. 2020;384:121400.
Article CAS PubMed Google Scholar
Meenakshi S, Rama R, Pandian K, Gopinath SC. Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: an overview. Microchem J. 2021;165: 106151.
Sanjari R, Kazemipour M, Zeidabadinejad L, Ansari M. Computational modeling, fabrication, and characterization of the deep eutectic solvent-based green molecular cage for selective metronidazole extraction from plasma followed by UHPLC with diode array detector determination. J Sep Sci. 2021;44:3268–78.
Article CAS PubMed Google Scholar
Asgari E, Sheikhmohammadi A, Yeganeh J. Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: optimization, kinetic, thermodynamic and equilibrium studies. Int J Biol Macromol. 2020;164:694–706.
Article CAS PubMed Google Scholar
El-Yazbi AF, Aboukhalil FM, Khamis EF, Elkhatib MA, El-Sayed MA, Youssef RM. Simple simultaneous determination of moxifloxacin and metronidazole in complex biological matrices. RSC Adv. 2022;12:15694–704.
Article CAS PubMed PubMed Central Google Scholar
El-Naem OA, El-Maraghy CM. A validated liquid chromatography-tandem mass spectrometric method for the determination of co-administered ranitidine and metronidazole in plasma of human volunteers. Anal Methods. 2021;13:2586–95.
Article CAS PubMed Google Scholar
Wachełko O, Szpot P, Tusiewicz K, Nowak K, Chłopaś-Konowałek A, Zawadzki M. An ultra-sensitive UHPLC-QqQ-MS/MS method for determination of 54 benzodiazepines (pharmaceutical drugs, NPS and metabolites) and z-drugs in biological samples. Talanta. 2023;251: 123816.
Magréault S, Jaureguy F, Zahar JR, Méchaï F, Toinon D, Cohen Y, Carbonnelle E, Jullien V. Automated HPLC-MS/MS assay for the simultaneous determination of ten plasma antibiotic concentrations. J Chromatogr B. 2022;1211: 123496.
Gadallah MI, Ali HR, Askal HF, Saleh GA. Innovative HPTLC-densitometric method for therapeutic monitoring of meropenem and metronidazole in acute pancreatic patients. Microchem J. 2019;146:940–7.
Luo Y, Barwa TN, Herdman K, Dempsey E, Breslin CB. Electroanalysis of metronidazole using exfoliated MoS2 sheets and electrodeposited amorphous MoSx. Electrochim Acta. 2023;462: 142778.
Pan Y, Chen D, Fan Y, Zuo J, Yang Q, Qiu F, Qiu L, Song H, Zhang S. Highly-sensitive and anti-interferential electrochemical determination of hazardous metronidazole using w-NiSO4·NiS2 coated ZIF-67-derived cobalt/nitrogen-doped carbon. Colloids Surf A. 2023;666: 131293.
Karim R, Saha P, Akter R, Falguni R, Shital RA, Awal A, Al Mamun M, Ahammad AS. Simultaneous determination of ranitidine and metronidazole at low potential using an acid-activated glassy carbon electrode. Chem Select. 2023;8: e202204174.
Darbandi M, Mohajer MF, Eynollahi M, Asadpour-Zeynali K. Sensitive sensing platform based on NiO and NiO-Ni nanoparticles for electrochemical determination of metronidazole. Chem Phys. 2022;560: 111590.
Muthukutty B, Arumugam B, Chen SM, Ramaraj SK. Low potential detection of antiprotozoal drug metronidazole with aid of novel dysprosium vanadate incorporated oxidized carbon nanofiber modified disposable screen-printed electrode. J Hazard Mater. 2021;407: 124745.
Article CAS PubMed Google Scholar
Materón EM, Wong A, Freitas TA, Faria RC, Oliveira ON Jr. A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60. J Pharm Anal. 2021;11:646–52.
Article PubMed PubMed Central Google Scholar
Hou Y, Long N, Xu Q, Li Y, Song P, Yang M, Wang J, Zhou L, Sheng P, Kong W. Development of a Nafion-MWCNTs and in-situ generated Au nanopopcorns dual-amplification electrochemical aptasensor for ultrasensitive detection of OTA. Food Chem. 2023;403: 134375.
Article CAS PubMed Google Scholar
Li YX, Qin HY, Hu C, Sun MM, Li PY, Liu H, Li JC, Li ZB, Wu LD, Zhu J. Research progress of nanomaterials-based sensors for food safety. J Anal Test. 2022;6:431–40.
Yadav M, Singh G, Lata S. Revisiting some recently developed conducting polymer@metal oxide nanostructures for electrochemical sensing of vital biomolecules: a review. J Anal Test. 2022;6:274–95.
Shams A, Yari A. A new sensor consisting of Ag-MWCNT nanocomposite as the sensing element for electrochemical determination of Epirubicin. Sens Actuators, B. 2019;286:131–8.
Guzsvány V, Vajdle O, Gurdeljević M, Kónya Z. Ag or Au nanoparticles decorated multiwalled carbon nanotubes coated carbon paste electrodes for amperometric determination of H2O2. Top Catal. 2018;61:1350–61.
Zare F, Ghaedi M, Daneshfar A, Agarwal S, Tyagi I, Saleh TA, Gupta VK. Efficient removal of radioactive uranium from solvent phase using AgOH–MWCNTs nanoparticles: kinetic and thermodynamic study. J Chem Eng. 2015;273:296–306.
Wang S, Pan M, Liu K, Xie X, Yang J, Hong L, Wang S. A SiO2@ MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate. Food Chem. 2022;381: 132225.
Article CAS PubMed Google Scholar
Lei H, Zhu H, Sun S, Zhu Z, Hao J, Lu S, Cai Y, Zhang M, Du M. Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite. Electrochim Acta. 2021;365: 137375.
Nasraoui S, Al-Hamry A, Teixeira PR, Ameur S, Paterno LG, Ali MB, Kanoun O. Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles. J Electroanal Chem. 2021;880: 114893.
Han W, Yang Y, Hang N, Zhao W, Lu P, Li S. Switchable hydrophilic solvent-based dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of four types of sulfonylurea herbicides in soils. J Sep Sci. 2022;45:1252–61.
Article CAS PubMed Google Scholar
Xue H, Jia L, Jiang H, Qin S, Yang Y, Wu J, Jing X. A successive homogeneous liquid-liquid microextraction based on solidification of switchable hydrophilicity solvents and ionic liquids for the detection of pyrethroids and cadmium in drinks. J Food Compos Anal. 2022;110: 104569.
Shahvandi SK, Banitaba MH, Ahmar H, Karimi P. A novel temperature controlled switchable solvent based microextraction method: application for the determination of phthalic acid esters in water samples. Microchem J. 2020;152: 104300.
Comments (0)