Development of a Voltammetric Sensor for the Selective Determination of Tumour Biomarker-Vanillylmandelic Acid

Verly IRN, van Kuilenburg ABP, Abeling NGGM, Goorden SMI, Fiocco M, Vaz FM, Noesel MM, Zwaan CM, Kaspers GL, Merks JHM, Caron HM, Tytgat GAM. Catecholamines profiles at diagnosis: increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients. Eur J Cancer. 2017;72:235–43.

Article  CAS  PubMed  Google Scholar 

Yamamoto K, Hanada R, Kikuchi A, Ichikawa M, Aihara T, Oguma E, Moritani T, Shimanuk Y, Tanimura M, Hayashi Y. Spontaneous regression of localized neuroblastoma detected by mass screening. J Clin Oncol. 2016;16(4):1265–9.

Article  Google Scholar 

Kavan P, Koutecký J. Advances in the diagnosis and treatment of neuroblastoma. Cas Lek Cesk. 1998;137(8):231–6.

CAS  PubMed  Google Scholar 

Maris JM, Matthay KK. Molecular biology of neuroblastoma. J Clin Oncol. 2016;17:2264.

Article  Google Scholar 

Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3(3):203–16.

Article  CAS  PubMed  Google Scholar 

Bolkar ST, Ghadge MS, Raste AS. Biochemical parameters in neuroblastoma. Indian J Clin Biochem. 2008;23(3):293–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishihira H, Toyoda Y, Tanaka Y, Ijiri R, Aida N, Takeuchi M. Natural course of neuroblastoma detected by mass screening: a 5-year prospective study at a single institution. J Clin Oncol. 2000;18(16):3012–7.

Article  CAS  PubMed  Google Scholar 

Chu CM, Rasalkar DD, Hu YJ, Cheng FWT, Li CK, Chu WCW. Clinical presentations and imaging findings of neuroblastoma beyond abdominal mass and a review of imaging algorithm. Br J Radiol. 2014;84(997):81–91.

Article  Google Scholar 

Gitlow SE, Mendlowitz M, Khassis S, Cohen G, Sha J. The diagnosis of pheochromocytoma by determination of urinary. J Clin Invest. 1960;39:221–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cetinkaya A, Irem Kaya S, Oacelikay G, Atici EB, Azkan SA. A molecularly imprinted electrochemical sensor based on highly selective and an ultra-trace assay of anti-cancer drug axitinib in its dosage form and biological samples. Talanta. 2021;233: 122569.

Article  CAS  PubMed  Google Scholar 

Şensoy KG, Muti M, Karagözler AE. Highly selective molecularly imprinting polymer-based sensor for the electrochemical determination of metoxuron. Microchem J. 2020;158: 108178.

Google Scholar 

Prusty AK, Bhand S. Molecularly imprinted polyresorcinol based capacitive sensor for sulphanilamide detection. Electroanalysis. 2019;201931:1797.

Article  Google Scholar 

Li J, Sun D. Molecularly imprinted ratiometric fluorescence nanosensors. Langmuir. 2022;38(44):13305–12.

Article  CAS  PubMed  Google Scholar 

Patra S, Roy E, Madhuri R, Sharma PK. Nano-iniferter based imprinted sensor for ultra trace level detection of prostate-specific antigen in both men and women. Biosens Bioelectron. 2015;66:1–10.

Article  CAS  PubMed  Google Scholar 

Karfa P, Roy E, Patra S, Kumar D, Madhuri R, Sharma PK. A fluorescent molecularly-imprinted polymer gate with temperature and pH as inputs for detection of alpha-fetoprotein. Biosens Bioelectron. 2016;78:454–63.

Article  CAS  PubMed  Google Scholar 

Ertürk G, Özen H, Tümer MA, Mattiasson B, Denizli A. Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sens Actuators B Chem. 2016;224:823–32.

Article  Google Scholar 

Zhang C, Bai W, Yang Z. A novel photoelectrochemical sensor for bilirubin based on porous transparent TiO2 and molecularly imprinted polypyrrole. Electrochim Acta. 2016;187:451–6.

Article  CAS  Google Scholar 

Çiçek Ç, Yilmaz F, Özgür E, Yavuz H, Denizli A. Molecularly imprinted quartz crystal microbalance sensor (QCM) for bilirubin detection. Chemosensors. 2016;4:21.

Article  Google Scholar 

Dejous C, Hallil H, Raimbault V, Lachaud JL, Plano B, Delépée R, Favetta P, Agrofoglio L, Rebière D. Love acoustic wave-based devices and molecularly-imprinted polymers as versatile sensors for electronic nose or tongue for cancer monitoring. Sensors. 2016;16:915.

Article  PubMed  PubMed Central  Google Scholar 

Luo Y, Ye Q, Xie T, Xie J, Mao K, Zou H, Li Y, Huang C, Zhen S. A novel molecular imprinted polymers-based lateral flow strip for sensitive detection of thiodiglycol. J Anal Test. 2023;7:110–7.

Article  Google Scholar 

Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery & cancer therapy. Mater Today. 2011;14(7–8):316–23.

Article  CAS  Google Scholar 

Luo J, Jiang S, Liu X. Electrochemical sensor for bovine hemoglobin based on a novel graphene-molecular imprinted polymers composite as recognition element. Sens Actuators B Chem. 2014;203:782–9.

Article  CAS  Google Scholar 

Cass AEG, Sales MGF. Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition : application to myoglobin detection. Biosens Bioelectron. 2013;45:237–44.

Article  PubMed  Google Scholar 

Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y. Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly ( nicotinamide )/CuO nanoparticles modified electrode. Biosens Bioelectron. 2015;67:121–8.

Article  CAS  PubMed  Google Scholar 

Semra A, Adil D. Molecular imprinting-based sensors: lab-on-chip integration and biomedical applications. Pharm Biomed Anal. 2023;225: 115213.

Article  Google Scholar 

Semra A, Seçkin K, Cem E, Adil D. Molecularly imprinted polymer-based sensors for protein detection. Polymers. 2023;15(3):629.

Article  Google Scholar 

Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P. Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes. Biosens Bioelectron. 2003;18(4):353–62.

Article  PubMed  Google Scholar 

Blanco-López MC, Gutiérrez-Fernández S, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P. Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Anal Bioanal Chem. 2004;378(8):1922–8.

Article  PubMed  Google Scholar 

Somnet K, Chimjarn S, Wanram S, Jarujamrus P, Nacapricha D, Lieberzeit PA, Amatatongchai M. Smart dual imprinted Origami 3D-ePAD for selective and simultaneous analysis of vanillylmandelic acid and 5-hydroxyindole-3-acetic acid carcinoid cancer biomarkers using graphene quantum dots coated with dual molecularly imprinted polymers. Talanta. 2024;269: 125512.

Article  CAS  PubMed  Google Scholar 

Pompeu Prado Moreira LF, Buffon E, Stradiotto NR. Electrochemical sensor based on reduced graphene oxide and molecularly imprinted poly(phenol) for d-xylose determination. Talanta. 2020;208: 120379.

Article  PubMed  Google Scholar 

Cosnier S. Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem. 2003;377(3):507–20.

Article  CAS  PubMed  Google Scholar 

Menon S, Jesny S, Girish KK. A voltammetric sensor for acetaminophen based on electropolymerized-molecularly imprinted poly(o-aminophenol) modified gold electrode. Talanta. 2018;179:668–75.

Article  CAS  PubMed  Google Scholar 

Guerrieri A, Ciriello R, Centonze D. Permselective and enzyme-entrapping behaviours of an electropolymerized, non-conducting, poly(o-aminophenol) thin film-modified electrode: a critical study. Biosens Bioelectron. 2009;24(6):1550–6.

Article  CAS  PubMed  Google Scholar 

Yu R, Zhou H, Li M, Song Q. Rational selection of the monomer for molecularly imprinted polymer preparation for selective and sensitive detection of 3-methylindole in water. J Electroanal Chem. 2019;832:129–36.

Article  CAS  Google Scholar 

Kodakat K, Kumar KG. Development of molecularly imprinted poly(Phenol) membrane based elect

Comments (0)

No login
gif