Mechanistic Investigation on the Antibacterial Activity of Biogenic Silver Nanoparticles Prepared Using Root Extract of Sarsaparilla and Demonstrated their In Vivo Efficacy in Zebrafish Model

Singh NA (2017) Nanotechnology innovations, industrial applications and patents. Environ Chem Lett 15:185–191. https://doi.org/10.1007/s10311-017-0612-8

Article  CAS  Google Scholar 

Ahmed KBA, Raman T, Veerappan A (2016) Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater Sci Eng C Mater Biol Appl 68:939–947. https://doi.org/10.1016/j.msec.2016.06.034

Article  CAS  PubMed  Google Scholar 

Subramaniyan SB, Ramani A, Ganapathy V, Anbazhagan V (2018) Preparation of self-assembled platinum nanoclusters to combat Salmonella typhi infection and inhibit biofilm formation. Colloids Surf B Biointerfaces 171:75–84. https://doi.org/10.1016/j.colsurfb.2018.07.023

Article  CAS  PubMed  Google Scholar 

Janani S, Stevenson P, Veerappan A (2014) Activity of catalytic silver nanoparticles modulated by capping agent hydrophobicity. Colloids Surf B Biointerfaces 117:528–533. https://doi.org/10.1016/j.colsurfb.2014.03.008

Article  CAS  PubMed  Google Scholar 

Nam NH, Luong NH (2019) Nanoparticles: synthesis and applications. Mater Biomed Eng. https://doi.org/10.1016/B978-0-08-102814-8.00008-1

Article  Google Scholar 

Seralathan J, Stevenson P, Subramaniam S, Raghavan R, Pemaiah B, Sivasubramanian A, Veerappan A (2014) Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 118:349–355. https://doi.org/10.1016/j.saa.2013.08.114

Article  CAS  PubMed  Google Scholar 

Singh NB, Jain P, De A, Tomar R (2021) Green synthesis and applications of nanomaterials. Curr Pharm Biotechnol 22(13):1705–1747. https://doi.org/10.2174/1389201022666210412142734

Article  CAS  PubMed  Google Scholar 

Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199(1):344–370. https://doi.org/10.1007/s12011-020-02138-3

Article  CAS  PubMed  Google Scholar 

Mann A, Nehra K, Rana JS, Dahiya T (2021) Antibiotic resistance in agriculture: perspectives on upcoming strategies to overcome upsurge in resistance. Curr Res Microb Sci 2:100030. https://doi.org/10.1016/j.crmicr.2021.100030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, Wang J, Lu C, Liao Q, Gudda FO, Ling W (2020) Antibiotics in animal manure and manure-based fertilizers: occurrence and ecological risk assessment. Chemosphere 255:127006. https://doi.org/10.1016/j.chemosphere.2020.127006

Article  CAS  PubMed  Google Scholar 

Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S (2022) Pharmaceutical residues: one of the significant problems in achieving “clean water for all” and its solution. Environ Res 215:114219. https://doi.org/10.1016/j.envres.2022.114219

Article  CAS  PubMed  Google Scholar 

Samreen AI, Malak HA, Abulreesh HH (2021) Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 27:101–111. https://doi.org/10.1016/j.jgar.2021.08.001

Article  CAS  PubMed  Google Scholar 

Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Article  Google Scholar 

Bala Subramaniyan S, Senthilnathan R, Arunachalam J, Anbazhagan V (2020) Revealing the significance of the glycan binding property of Butea monosperma seed lectin for enhancing the antibiofilm activity of silver nanoparticles against uropathogenic Escherichia coli. Bioconjug Chem 31(1):139–148. https://doi.org/10.1021/acs.bioconjchem.9b00821

Article  CAS  PubMed  Google Scholar 

Ameen F, Srinivasan P, Selvankumar T et al (2019) Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bio-reductant and their broad-spectrum antibacterial activity. Bioorg Chem 88:102970s. https://doi.org/10.1016/j.bioorg.2019.102970

Article  CAS  Google Scholar 

Megarajan S, Ameen F, Singaravelu D, Islam MA, Veerappan A (2022) Synthesis of N-myristoyltaurine stabilized gold and silver nano-particles: Assessment of their catalytic activity, antimicrobial effectiveness and toxicity in zebrafish. Environ Res 212:113159. https://doi.org/10.1016/j.envres.2022.113159

Article  CAS  PubMed  Google Scholar 

Norman G, Christie J, Liu Z, Westby MJ, Jefferies JM, Hudson T, Edwards J, Mohapatra DP, Hassan IA, Dumville JC (2017) Antiseptics for burns. Cochrane Database Syst Rev 7(7):CD011821. https://doi.org/10.1002/14651858.CD011821.pub26

Article  PubMed  Google Scholar 

Khan I, Bahuguna A, Krishnan M, Shukla S, Lee H, Min SH, Choi DK, Cho Y, Bajpai VK, Huh YS, Kang SC (2019) The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. Sci Total Environ 679:365–377. https://doi.org/10.1016/j.scitotenv.2019.05.045

Article  CAS  PubMed  Google Scholar 

Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA (2023) Revisiting the green synthesis of nanoparticles: uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. Int J Nanomed 18:4727–4750. https://doi.org/10.2147/IJN.S419369

Article  CAS  Google Scholar 

Bhattu M, Singh J (2023) Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. Chemosphere 321:138072. https://doi.org/10.1016/j.chemosphere.2023.138072

Article  CAS  PubMed  Google Scholar 

Thakare Y, Kore S, Sharma I, Shah M (2022) A comprehensive review on sustainable greener nanoparticles for efficient dye degradation. Environ Sci Pollut Res Int 29(37):55415–55436. https://doi.org/10.1007/s11356-022-20127-y

Article  CAS  PubMed  Google Scholar 

Kumar M, Venugopal AKP, Pakshirajan K (2022) Novel biologically synthesized metal nanopowder from wastewater for dye removal application. Environ Sci Pollut Res Int 29(25):38478–38492. https://doi.org/10.1007/s11356-022-18723-z

Article  CAS  PubMed  Google Scholar 

Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran K, Tsai PC, Pugazhendhi A, Ponnusamy VK (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol B 205:111823. https://doi.org/10.1016/j.jphotobiol.2020.111823

Article  CAS  PubMed  Google Scholar 

Dharshini KS, Yokesh T, Mariappan M, Ameen F, Amirul Islam M, Veerappan A (2023) Photosynthesis of silver nanoparticles embedded paper for sensing mercury presence in environmental water. Chemosphere 329:138610. https://doi.org/10.1016/j.chemosphere.2023.138610

Article  CAS  PubMed  Google Scholar 

Nandy S, Mukherjee A, Pandey DK, Ray P, Dey A (2020) Indian Sarsaparilla (Hemidesmus indicus): recent progress in research on ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol 254:30. https://doi.org/10.1016/j.jep.2020.112609

Article  CAS  Google Scholar 

Shikha S, Dureja S, Sapra R, Babu J, Haridas V, Pattanayek SK (2021) Interaction of borohydride stabilized silver nanoparticles with sulfur-containing organophosphates. RSC Adv 11(51):32286–32294. https://doi.org/10.1039/d1ra06911j

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira AM, Vikulina A, Loughlin M, Volodkin D (2023) How similar is the antibacterial activity of silver nanoparticles coated with different capping agents? RSC Adv 13(16):10542–10555. https://doi.org/10.1039/d3ra00917c

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubeena AS, Lakshmi S, George D, Subramaniyan SB, Veerappan A, Preetham E (2020) Shrimp lectin (Md-Lec) conju-gated copper sulfide nanoparticles enhance the elimination of aquatic pathogens in infected Nile tilapia (Oreochromis nilo

Comments (0)

No login
gif