Singh NA (2017) Nanotechnology innovations, industrial applications and patents. Environ Chem Lett 15:185–191. https://doi.org/10.1007/s10311-017-0612-8
Ahmed KBA, Raman T, Veerappan A (2016) Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater Sci Eng C Mater Biol Appl 68:939–947. https://doi.org/10.1016/j.msec.2016.06.034
Article CAS PubMed Google Scholar
Subramaniyan SB, Ramani A, Ganapathy V, Anbazhagan V (2018) Preparation of self-assembled platinum nanoclusters to combat Salmonella typhi infection and inhibit biofilm formation. Colloids Surf B Biointerfaces 171:75–84. https://doi.org/10.1016/j.colsurfb.2018.07.023
Article CAS PubMed Google Scholar
Janani S, Stevenson P, Veerappan A (2014) Activity of catalytic silver nanoparticles modulated by capping agent hydrophobicity. Colloids Surf B Biointerfaces 117:528–533. https://doi.org/10.1016/j.colsurfb.2014.03.008
Article CAS PubMed Google Scholar
Nam NH, Luong NH (2019) Nanoparticles: synthesis and applications. Mater Biomed Eng. https://doi.org/10.1016/B978-0-08-102814-8.00008-1
Seralathan J, Stevenson P, Subramaniam S, Raghavan R, Pemaiah B, Sivasubramanian A, Veerappan A (2014) Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 118:349–355. https://doi.org/10.1016/j.saa.2013.08.114
Article CAS PubMed Google Scholar
Singh NB, Jain P, De A, Tomar R (2021) Green synthesis and applications of nanomaterials. Curr Pharm Biotechnol 22(13):1705–1747. https://doi.org/10.2174/1389201022666210412142734
Article CAS PubMed Google Scholar
Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199(1):344–370. https://doi.org/10.1007/s12011-020-02138-3
Article CAS PubMed Google Scholar
Mann A, Nehra K, Rana JS, Dahiya T (2021) Antibiotic resistance in agriculture: perspectives on upcoming strategies to overcome upsurge in resistance. Curr Res Microb Sci 2:100030. https://doi.org/10.1016/j.crmicr.2021.100030
Article CAS PubMed PubMed Central Google Scholar
Zhou X, Wang J, Lu C, Liao Q, Gudda FO, Ling W (2020) Antibiotics in animal manure and manure-based fertilizers: occurrence and ecological risk assessment. Chemosphere 255:127006. https://doi.org/10.1016/j.chemosphere.2020.127006
Article CAS PubMed Google Scholar
Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S (2022) Pharmaceutical residues: one of the significant problems in achieving “clean water for all” and its solution. Environ Res 215:114219. https://doi.org/10.1016/j.envres.2022.114219
Article CAS PubMed Google Scholar
Samreen AI, Malak HA, Abulreesh HH (2021) Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 27:101–111. https://doi.org/10.1016/j.jgar.2021.08.001
Article CAS PubMed Google Scholar
Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Bala Subramaniyan S, Senthilnathan R, Arunachalam J, Anbazhagan V (2020) Revealing the significance of the glycan binding property of Butea monosperma seed lectin for enhancing the antibiofilm activity of silver nanoparticles against uropathogenic Escherichia coli. Bioconjug Chem 31(1):139–148. https://doi.org/10.1021/acs.bioconjchem.9b00821
Article CAS PubMed Google Scholar
Ameen F, Srinivasan P, Selvankumar T et al (2019) Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bio-reductant and their broad-spectrum antibacterial activity. Bioorg Chem 88:102970s. https://doi.org/10.1016/j.bioorg.2019.102970
Megarajan S, Ameen F, Singaravelu D, Islam MA, Veerappan A (2022) Synthesis of N-myristoyltaurine stabilized gold and silver nano-particles: Assessment of their catalytic activity, antimicrobial effectiveness and toxicity in zebrafish. Environ Res 212:113159. https://doi.org/10.1016/j.envres.2022.113159
Article CAS PubMed Google Scholar
Norman G, Christie J, Liu Z, Westby MJ, Jefferies JM, Hudson T, Edwards J, Mohapatra DP, Hassan IA, Dumville JC (2017) Antiseptics for burns. Cochrane Database Syst Rev 7(7):CD011821. https://doi.org/10.1002/14651858.CD011821.pub26
Khan I, Bahuguna A, Krishnan M, Shukla S, Lee H, Min SH, Choi DK, Cho Y, Bajpai VK, Huh YS, Kang SC (2019) The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. Sci Total Environ 679:365–377. https://doi.org/10.1016/j.scitotenv.2019.05.045
Article CAS PubMed Google Scholar
Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA (2023) Revisiting the green synthesis of nanoparticles: uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. Int J Nanomed 18:4727–4750. https://doi.org/10.2147/IJN.S419369
Bhattu M, Singh J (2023) Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. Chemosphere 321:138072. https://doi.org/10.1016/j.chemosphere.2023.138072
Article CAS PubMed Google Scholar
Thakare Y, Kore S, Sharma I, Shah M (2022) A comprehensive review on sustainable greener nanoparticles for efficient dye degradation. Environ Sci Pollut Res Int 29(37):55415–55436. https://doi.org/10.1007/s11356-022-20127-y
Article CAS PubMed Google Scholar
Kumar M, Venugopal AKP, Pakshirajan K (2022) Novel biologically synthesized metal nanopowder from wastewater for dye removal application. Environ Sci Pollut Res Int 29(25):38478–38492. https://doi.org/10.1007/s11356-022-18723-z
Article CAS PubMed Google Scholar
Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran K, Tsai PC, Pugazhendhi A, Ponnusamy VK (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol B 205:111823. https://doi.org/10.1016/j.jphotobiol.2020.111823
Article CAS PubMed Google Scholar
Dharshini KS, Yokesh T, Mariappan M, Ameen F, Amirul Islam M, Veerappan A (2023) Photosynthesis of silver nanoparticles embedded paper for sensing mercury presence in environmental water. Chemosphere 329:138610. https://doi.org/10.1016/j.chemosphere.2023.138610
Article CAS PubMed Google Scholar
Nandy S, Mukherjee A, Pandey DK, Ray P, Dey A (2020) Indian Sarsaparilla (Hemidesmus indicus): recent progress in research on ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol 254:30. https://doi.org/10.1016/j.jep.2020.112609
Shikha S, Dureja S, Sapra R, Babu J, Haridas V, Pattanayek SK (2021) Interaction of borohydride stabilized silver nanoparticles with sulfur-containing organophosphates. RSC Adv 11(51):32286–32294. https://doi.org/10.1039/d1ra06911j
Article CAS PubMed PubMed Central Google Scholar
Ferreira AM, Vikulina A, Loughlin M, Volodkin D (2023) How similar is the antibacterial activity of silver nanoparticles coated with different capping agents? RSC Adv 13(16):10542–10555. https://doi.org/10.1039/d3ra00917c
Article CAS PubMed PubMed Central Google Scholar
Rubeena AS, Lakshmi S, George D, Subramaniyan SB, Veerappan A, Preetham E (2020) Shrimp lectin (Md-Lec) conju-gated copper sulfide nanoparticles enhance the elimination of aquatic pathogens in infected Nile tilapia (Oreochromis nilo
Comments (0)