Guo Y, Song G, Sun M, Wang J, Wang Y (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front cell infect microbiol 10:107
Article PubMed PubMed Central Google Scholar
Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, Holland TL, Fowler VG Jr (2019) Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17(4):203–218
Article CAS PubMed PubMed Central Google Scholar
Reynolds D, Kollef M (2021) The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs 81(18):2117–2131
Article CAS PubMed PubMed Central Google Scholar
Sønderholm M, Kragh KN, Koren K, Jakobsen TH, Darch SE, Alhede M, Jensen PØ, Whiteley M, Kühl M, Bjarnsholt T (2017) Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics. Appl Environ Microbiol 83(9):e00113-00117
Article PubMed PubMed Central Google Scholar
Sønderholm M, Koren K, Wangpraseurt D, Jensen PØ, Kolpen M, Kragh KN, Bjarnsholt T, Kühl M (2018) Tools for studying growth patterns and chemical dynamics of aggregated Pseudomonas aeruginosa exposed to different electron acceptors in an alginate bead model. NPJ Biofilms Microbiomes 4(1):3
Article PubMed PubMed Central Google Scholar
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD (2023) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 5:100129.
Article PubMed PubMed Central Google Scholar
Yung DBY, Sircombe KJ, Pletzer D (2021) Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 116(1):1–15
Article CAS PubMed Google Scholar
Rice T, Zannini E, Arendt K, Coffey EA (2020) A review of polyols–biotechnological production, food applications, regulation, labeling and health effects. Crit Rev Food Sci Nutr 60(12):2034–2051
Barraud N, Buson A, Jarolimek W, Rice SA (2013) Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS ONE 8(12):e84220
Article PubMed PubMed Central Google Scholar
Park Y-N, Jeong S-S, Zeng J, Kim S-H, Hong S-J, Ohk S-H, Choi C-H (2014) Anti-cariogenic effects of erythritol on growth and adhesion of Streptococcus mutans. Food Sci Biotechnol 23:1587–1591
De Oliveira GGC, Freires DMT, de Oliveira SG, de Mattos Guaraldi AL, de Carvalho S (2018) Antibacterial and anticariogenic properties of xylitol: a literature review. Rev Bras Odontol 75:e960
Ferreira AS, Silva-Paes-Leme AF, Raposo NRB, da Silva SS (2015) By passing microbial resistance: xylitol controls microorganisms growth by means of its anti-adherence property. Curr Pharm Biotechnol 16(1):35–42
Article CAS PubMed Google Scholar
Gasmi Benahmed A, Gasmi A, Arshad M, Shanaida M, Lysiuk R, Peana M, Pshyk-Titko I, Adamiv S, Shanaida Y, Bjørklund G (2020) Health benefits of xylitol. Appl Microbiol Biotechnol 104:7225–7237
Article CAS PubMed Google Scholar
Jabalameli F, Emaneini M, Beigverdi R, Halimi S, Siroosi M (2023) Determining effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of clinical strains of Pseudomonas aeruginosa in biofilm-inspired alginate encapsulates. Ann Clin Microbiol Antimicrob 22(1):61
Article CAS PubMed PubMed Central Google Scholar
Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S (2017) In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front cell infect microbiol 7:106
Article PubMed PubMed Central Google Scholar
Pastar I, Nusbaum AG, Gil J, Patel SB, Chen J, Valdes J, Stojadinovic O, Plano LR, Tomic-Canic M, Davis SC (2013) Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS ONE 8(2):e56846
Article CAS PubMed PubMed Central Google Scholar
Akiyama H, Oono T, Huh W-K, Yamasaki O, Ogawa S, Katsuyama M, Ichikawa H, Iwatsuki K (2002) Actions of farnesol and xylitol against Staphylococcus aureus. Chemotherapy 48(3):122–128
Article CAS PubMed Google Scholar
Ammons MCB, Ward LS, James GA (2011) Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int J Antimicrob Agents 8(3):268–273
Zhou G, Peng H, Wang Y-s, Huang X-m, Xie X-b, Shi Q-s (2019) Enhanced synergistic effects of xylitol and isothiazolones for inhibition of initial biofilm formation by Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 6538. J Oral Sci 61(2):255–263
Article CAS PubMed Google Scholar
Trahan L, Mouton C (1987) Selection for Streptococcus mutans with an altered xylitol transport capacity in chronic xylitol consumers. J Dent Res 66(5):982–988
Article CAS PubMed Google Scholar
Masako K, Yusuke K, Hideyuki I, Atsuko M, Yoshiki M, Kayoko M, Makoto K (2005) A novel method to control the balance of skin microflora: part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J Dermatol Sci 38(3):207–213
Sousa LPd, Silva AFd, Calil NO, Oliveira MG, Silva SSd, Raposo NRB (2011) In vitro inhibition of Pseudomonas aeruginosa adhesion by xylitol. Braz Arch Biol Techn 54:877–884
Anglenius H, Tiihonen K (2020) Evaluation of xylitol as an agent that controls the growth of skin microbes: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. Korean J Microbiol 56(1):54–58
Abbas HA, Serry FM, EL-Masry EM (2012) Combating Pseudomonas aeruginosa biofilms by potential biofilm inhibitors. Asian J Pharm Sci 2(2):66–72
Jain R, Lee T, Hardcastle T, Biswas K, Radcliff F, Douglas R (2016) The in vitro effect of xylitol on chronic rhinosinusitis biofilms. Rhinology 54(4):323–328
Article CAS PubMed Google Scholar
Dowd S, Sun Y, Smith E, Kennedy J, Jones C, Wolcott R (2009) Effects of biofilm treatments on the multi-species Lubbock chronic wound biofilm model. J Wound Care 18(12):508–512
Article CAS PubMed Google Scholar
Ammons MCB, Ward LS, Fisher ST, Wolcott RD, James GA (2009) In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol. Int J Antimicrob Agents 33(3):230–236
Article CAS PubMed Google Scholar
Brown CL, Graham SM, Cable BB, Ozer EA, Taft PJ, Zabner J (2004) Xylitol enhances bacterial killing in the rabbit maxillary sinus. Laryngoscope 114(11):2021–2024
Article CAS PubMed Google Scholar
Vani S, Vadakkan K, Mani B (2023) A narrative review on bacterial biofilm: its formation, clinical aspects and inhibition strategies. Future J Pharm Sci 9(1):50
Verderosa AD, Totsika M, Fairfull-Smith KE (2019) Bacterial biofilm eradication agents: a current review. Front Chem 7:495483
Ciofu O, Tolker-Nielsen T, Jensen PØ, Wang H, Høiby N (2015) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Del Rev 85:7–23
Ly KL, Colon-Ascanio M, Ou J, Wang H, Lee SW, Wang Y, Choy JS, Phillips KS, Luo X (2023) Dissolvable alginate hydrogel-based biofilm microreactors for antibiotic susceptibility assays. Biofilm 5:100103
Comments (0)