Effect of Xylitol on Inhibition and Eradication of Pseudomonas aeruginosa PAO1 and Methicillin-Resistant Staphylococcus aureus Biofilms in an Alginate Bead Model

Guo Y, Song G, Sun M, Wang J, Wang Y (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front cell infect microbiol 10:107

Article  PubMed  PubMed Central  Google Scholar 

Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, Holland TL, Fowler VG Jr (2019) Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17(4):203–218

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reynolds D, Kollef M (2021) The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs 81(18):2117–2131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sønderholm M, Kragh KN, Koren K, Jakobsen TH, Darch SE, Alhede M, Jensen PØ, Whiteley M, Kühl M, Bjarnsholt T (2017) Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics. Appl Environ Microbiol 83(9):e00113-00117

Article  PubMed  PubMed Central  Google Scholar 

Sønderholm M, Koren K, Wangpraseurt D, Jensen PØ, Kolpen M, Kragh KN, Bjarnsholt T, Kühl M (2018) Tools for studying growth patterns and chemical dynamics of aggregated Pseudomonas aeruginosa exposed to different electron acceptors in an alginate bead model. NPJ Biofilms Microbiomes 4(1):3

Article  PubMed  PubMed Central  Google Scholar 

Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD (2023) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 5:100129.

Article  PubMed  PubMed Central  Google Scholar 

Yung DBY, Sircombe KJ, Pletzer D (2021) Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 116(1):1–15

Article  CAS  PubMed  Google Scholar 

Rice T, Zannini E, Arendt K, Coffey EA (2020) A review of polyols–biotechnological production, food applications, regulation, labeling and health effects. Crit Rev Food Sci Nutr 60(12):2034–2051

Article  PubMed  Google Scholar 

Barraud N, Buson A, Jarolimek W, Rice SA (2013) Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS ONE 8(12):e84220

Article  PubMed  PubMed Central  Google Scholar 

Park Y-N, Jeong S-S, Zeng J, Kim S-H, Hong S-J, Ohk S-H, Choi C-H (2014) Anti-cariogenic effects of erythritol on growth and adhesion of Streptococcus mutans. Food Sci Biotechnol 23:1587–1591

Article  CAS  Google Scholar 

De Oliveira GGC, Freires DMT, de Oliveira SG, de Mattos Guaraldi AL, de Carvalho S (2018) Antibacterial and anticariogenic properties of xylitol: a literature review. Rev Bras Odontol 75:e960

Article  Google Scholar 

Ferreira AS, Silva-Paes-Leme AF, Raposo NRB, da Silva SS (2015) By passing microbial resistance: xylitol controls microorganisms growth by means of its anti-adherence property. Curr Pharm Biotechnol 16(1):35–42

Article  CAS  PubMed  Google Scholar 

Gasmi Benahmed A, Gasmi A, Arshad M, Shanaida M, Lysiuk R, Peana M, Pshyk-Titko I, Adamiv S, Shanaida Y, Bjørklund G (2020) Health benefits of xylitol. Appl Microbiol Biotechnol 104:7225–7237

Article  CAS  PubMed  Google Scholar 

Jabalameli F, Emaneini M, Beigverdi R, Halimi S, Siroosi M (2023) Determining effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of clinical strains of Pseudomonas aeruginosa in biofilm-inspired alginate encapsulates. Ann Clin Microbiol Antimicrob 22(1):61

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S (2017) In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front cell infect microbiol 7:106

Article  PubMed  PubMed Central  Google Scholar 

Pastar I, Nusbaum AG, Gil J, Patel SB, Chen J, Valdes J, Stojadinovic O, Plano LR, Tomic-Canic M, Davis SC (2013) Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS ONE 8(2):e56846

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akiyama H, Oono T, Huh W-K, Yamasaki O, Ogawa S, Katsuyama M, Ichikawa H, Iwatsuki K (2002) Actions of farnesol and xylitol against Staphylococcus aureus. Chemotherapy 48(3):122–128

Article  CAS  PubMed  Google Scholar 

Ammons MCB, Ward LS, James GA (2011) Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int J Antimicrob Agents 8(3):268–273

Google Scholar 

Zhou G, Peng H, Wang Y-s, Huang X-m, Xie X-b, Shi Q-s (2019) Enhanced synergistic effects of xylitol and isothiazolones for inhibition of initial biofilm formation by Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 6538. J Oral Sci 61(2):255–263

Article  CAS  PubMed  Google Scholar 

Trahan L, Mouton C (1987) Selection for Streptococcus mutans with an altered xylitol transport capacity in chronic xylitol consumers. J Dent Res 66(5):982–988

Article  CAS  PubMed  Google Scholar 

Masako K, Yusuke K, Hideyuki I, Atsuko M, Yoshiki M, Kayoko M, Makoto K (2005) A novel method to control the balance of skin microflora: part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J Dermatol Sci 38(3):207–213

Article  CAS  Google Scholar 

Sousa LPd, Silva AFd, Calil NO, Oliveira MG, Silva SSd, Raposo NRB (2011) In vitro inhibition of Pseudomonas aeruginosa adhesion by xylitol. Braz Arch Biol Techn 54:877–884

Article  Google Scholar 

Anglenius H, Tiihonen K (2020) Evaluation of xylitol as an agent that controls the growth of skin microbes: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. Korean J Microbiol 56(1):54–58

Google Scholar 

Abbas HA, Serry FM, EL-Masry EM (2012) Combating Pseudomonas aeruginosa biofilms by potential biofilm inhibitors. Asian J Pharm Sci 2(2):66–72

Google Scholar 

Jain R, Lee T, Hardcastle T, Biswas K, Radcliff F, Douglas R (2016) The in vitro effect of xylitol on chronic rhinosinusitis biofilms. Rhinology 54(4):323–328

Article  CAS  PubMed  Google Scholar 

Dowd S, Sun Y, Smith E, Kennedy J, Jones C, Wolcott R (2009) Effects of biofilm treatments on the multi-species Lubbock chronic wound biofilm model. J Wound Care 18(12):508–512

Article  CAS  PubMed  Google Scholar 

Ammons MCB, Ward LS, Fisher ST, Wolcott RD, James GA (2009) In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol. Int J Antimicrob Agents 33(3):230–236

Article  CAS  PubMed  Google Scholar 

Brown CL, Graham SM, Cable BB, Ozer EA, Taft PJ, Zabner J (2004) Xylitol enhances bacterial killing in the rabbit maxillary sinus. Laryngoscope 114(11):2021–2024

Article  CAS  PubMed  Google Scholar 

Vani S, Vadakkan K, Mani B (2023) A narrative review on bacterial biofilm: its formation, clinical aspects and inhibition strategies. Future J Pharm Sci 9(1):50

Article  Google Scholar 

Verderosa AD, Totsika M, Fairfull-Smith KE (2019) Bacterial biofilm eradication agents: a current review. Front Chem 7:495483

Article  Google Scholar 

Ciofu O, Tolker-Nielsen T, Jensen PØ, Wang H, Høiby N (2015) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Del Rev 85:7–23

Article  CAS  Google Scholar 

Ly KL, Colon-Ascanio M, Ou J, Wang H, Lee SW, Wang Y, Choy JS, Phillips KS, Luo X (2023) Dissolvable alginate hydrogel-based biofilm microreactors for antibiotic susceptibility assays. Biofilm 5:100103

Article  PubMed  PubMed Central 

Comments (0)

No login
gif