Labaki WW, Rosenberg SR (2020) Chronic obstructive pulmonary disease. Ann Intern Med. https://doi.org/10.7326/AITC202008040
Murgia X, Kany AM, Herr C, Ho DK et al (2020) Micro-rheological properties of lung homogenates correlate with infection severity in a mouse model of Pseudomonas aeruginosa lung infection. Sci Rep. https://doi.org/10.1038/s41598-020-73459-5
Article PubMed PubMed Central Google Scholar
Malhotra S, Hayes D Jr, Wozniak DJ (2019) Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface. Rev Clin Microbiol Rev. https://doi.org/10.1128/CMR.00138-18
Pang Z, Raudonis R, Glick BR et al (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2018.11.013
Subedi D, Vijay AK, Kohli GS, Rice SA et al (2018) Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep. https://doi.org/10.1038/s41598-018-34020-7
Article PubMed PubMed Central Google Scholar
Lutz L, Leão RS, Ferreira AG et al (2013) Hypermutable Pseudomonas aeruginosa in cystic fibrosis patients from two Brazilian cities. Am Soc Microbio. https://doi.org/10.1128/JCM.02638-12
Irvine S, Bunk B, Bayes HK et al (2019) Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model. Microb Genom. https://doi.org/10.1099/mgen.0.000262
Article PubMed PubMed Central Google Scholar
Rees VE, Deveson Lucas DS, López-Causapé C, Huang Y et al (2019) Characterization of hypermutator Pseudomonas aeruginosa isolates from patients with cystic fibrosis in Australia. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02538-18
Article PubMed PubMed Central Google Scholar
Vidaillac C, Yong VFL, Aschtgen MS, Qu J et al (2020) Sex steroids induce membrane stress responses and virulence properties in Pseudomonas aeruginosa. MBio. https://doi.org/10.1128/mBio.01774-20
Article PubMed PubMed Central Google Scholar
Cross AR, Raghuram V, Wang Z, Dey D et al (2020) Overproduction of the AlgT sigma factor is lethal to mucoid Pseudomonas aeruginosa. J Bacteriol. https://doi.org/10.1128/JB.00445-20
Article PubMed PubMed Central Google Scholar
Oliver A, Canton R, Campo P et al (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254
Article CAS PubMed Google Scholar
Bilal H, Bergen PJ, Tait JR et al (2020) Clinically relevant epithelial lining fluid concentrations of meropenem with ciprofloxacin provide synergistic killing and resistance suppression of hypermutable Pseudomonas aeruginosa in a dynamic biofilm model. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00469-20
Article PubMed PubMed Central Google Scholar
Mena A, Maciá MD, Borrell N et al (2007) Inactivation of the mismatch repair system in Pseudomonas aeruginosa attenuates virulence but favors persistence of oropharyngeal colonization in cystic fibrosis mice. J Bacteriol 189:3665–3668. https://doi.org/10.1128/JB.00120-07
Article CAS PubMed PubMed Central Google Scholar
Khil PP, Dulanto A, Ho J et al (2019) Dynamic emergence of mismatch repair deficiency facilitates rapid evolution of ceftazidime-avibactam resistance in Pseudomonas aeruginosa acute infection. MBio. https://doi.org/10.1128/Mbio.01822-19
Article PubMed PubMed Central Google Scholar
Sabra W, Haddad AM, Zeng A-P (2014) Comparative physiological study of the wild type and the small colony variant of Pseudomonas aeruginosa 20265 under controlled growth conditions. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-013-1521-z
Malone JG (2015) Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist. https://doi.org/10.2147/IDR.S68214
Article PubMed PubMed Central Google Scholar
Miller JM, Binnicker MJ, Campbell S et al (2018) A guide to utilization of the microbiology laboratory for diagnosis of infectious dis-eases: 2018 update by the infectious diseases society of America and the American society for microbiology. Clin Infect Dis. https://doi.org/10.1093/cid/ciy381
Article PubMed PubMed Central Google Scholar
BRASIL. Agência Nacional de Vigilância Sanitária. Microbiologia Clínica para o Controle de Infecção Relacionada à Assistência à Saúde. Módulo 4: Procedimentos Laboratoriais: da requisição do exame à análise microbiológica e laudo final (2013) Agência Nacional de Vigilância Sanitária (Anvisa). Brasília. https://www.saude.go.gov.br/images/imagens_migradas/upload/arquivos/2017-02/modulo-4---procedimentos-laboratoriais---da-requisicao-do-exame-a-analise-microbiologica-e-laudo-final.pdf
Clinical and Laboratory Standards Intitute (CLSIa) Standards, Performance Testing, Antimicrobial Susceptibility. CLSI document M100. Wayne, P.A., 2020.
Clinical and Laboratory Standards Intitute (CLSIb) Performance Standards for Antimicrobial Disk Susceptibility Tests. CLSI document M02. Wayne, P.A., 2020.
Clinical and Laboratory Standards Intitute (CLSIc) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. CLSI document M07. Wayne, P.A., 2020.
Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282. https://doi.org/10.1128/AAC.49.6.2276-2282.2005
Article CAS PubMed PubMed Central Google Scholar
Maciá MD et al (2004) Detection and Susceptibility testing of hypermutable Pseudomonas aeruginosa strains with the etest and disk diffusion. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.48.7.2665-2672.2004
Article PubMed PubMed Central Google Scholar
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. https://doi.org/10.1089/cmb.2012.0021
Article PubMed PubMed Central Google Scholar
Pritchard L, Glover RH, Humphris S et al (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. https://doi.org/10.1039/C5AY02550H
Potron A, Poirel L, Nordmann P (2015) Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2015.03.001
Rossi E, La Rosa R, Bartell JA et al (2020) Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbio. https://doi.org/10.1038/s41579-020-00477-5
Ferreira AG, Leão RS, Carvalho-Assef AP et al (2010) Influence of biofilm formation in the susceptibility of Pseudomonas aeruginosa from Brazilian patients with cystic fibrosis. APMIS. https://doi.org/10.1111/j.1600-0463.2010.02636.x
Bonyadi P, Saleh NT, Dehghani M et al (2022) Prevalence of antibiotic resistance of Pseudomonas aeruginosa in cystic fibrosis infection: a systematic review and meta-analysis. Microb Pathog. https://doi.org/10.1016/j.micpath.2022.105461
Reynolds D, Kollef M (2021) The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs. https://doi.org/10.1007/s40265-021-01635-6
Article PubMed PubMed Central Google Scholar
Savinova T, Bocharova Y, Mayanskiy N, Chebotar I (2022) Genetic determinants of virulence and antibiotic resistance are common for Pseudomonas aeruginosa ST235 isolates from cystic fibrosis patients from various geographical regions. Diagn Microbiol Infect Dis. https://doi.org/10.1016/j.diagmicrobio.2021.115596
Almeida MM, Marques EA, Leao RS et al (2021) Ca
Comments (0)