Interleukin-11 Is Involved in Hyperoxia-induced Bronchopulmonary Dysplasia in Newborn Mice by Mediating Epithelium-Fibroblast Cross-talk

Owen, L.S., B.J. Manley, P.G. Davis, and L.W. Doyle. 2017. The evolution of modern respiratory care for preterm infants. Lancet 389 (10079): 1649–1659. https://doi.org/10.1016/S0140-6736(17)30312-4.

Article  PubMed  Google Scholar 

Baraldi, E., and M. Filippone. 2007. Chronic lung disease after premature birth. N Engl J Med 357 (19): 1946–55. https://doi.org/10.1056/NEJMra067279.

Article  CAS  PubMed  Google Scholar 

Hilgendorff, A., I. Reiss, H. Ehrhardt, O. Eickelberg, and C.M. Alvira. 2014. Chronic lung disease in the preterm infant Lessons learned from animal models. Am J Respir Cell Mol Biol. 50 (2): 233–45. https://doi.org/10.1165/rcmb.2013-0014TR.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reddy, S.P., P.M. Hassoun, and R. Brower. 2007. Redox imbalance and ventilator-induced lung injury. Antioxid Redox Signal 9 (11): 2003–12. https://doi.org/10.1089/ars.2007.1770.

Article  CAS  PubMed  Google Scholar 

Zhu, X., F. Wang, X. Lei, and W. Dong. 2021. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction. Exp Biol Med (Maywood) 246 (5): 596–606. https://doi.org/10.1177/1535370220975106.

Article  CAS  PubMed  Google Scholar 

Zhu, X., X. Lei, J. Wang, and W. Dong. 2020. Protective effects of resveratrol on hyperoxia-induced lung injury in neonatal rats by alleviating apoptosis and ROS production. J Matern Fetal Neonatal Med 33 (24): 4150–4158. https://doi.org/10.1080/14767058.2019.

Article  CAS  PubMed  Google Scholar 

Hu, Z., and G. Zhou. 2022. CREB1 Transcriptionally Activates LTBR to Promote the NF-κB Pathway and Apoptosis in Lung Epithelial Cells. Comput Math Methods Med 2022: 9588740. https://doi.org/10.1155/2022/9588740.

Article  PubMed  PubMed Central  Google Scholar 

Burgoyne, R.A., A.J. Fisher, and L.A. Borthwick. 2021. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 10 (10): 2763. https://doi.org/10.3390/cells10102763.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinz, B., S.H. Phan, V.J. Thannickal, M. Prunotto, A. Desmoulière, J. Varga, O. De Wever, M. Mareel, and G. Gabbiani. 2012. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180 (4): 1340–55. https://doi.org/10.1016/j.ajpath.2012.02.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Araya, J., S. Cambier, J.A. Markovics, P. Wolters, D. Jablons, A. Hill, W. Finkbeiner, K. Jones, V.C. Broaddus, D. Sheppard, A. Barzcak, Y. Xiao, D.J. Erle, and S.L. Nishimura. 2007. Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients. J Clin Invest 117 (11): 3551–62. https://doi.org/10.1172/JCI32526.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ng, B., S.A. Cook, and S. Schafer. 2020. Interleukin-11 signaling underlies fibrosis, parenchymal dysfunction, and chronic inflammation of the airway. Exp Mol Med 52 (12): 1871–1878. https://doi.org/10.1038/s12276-020-00531-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hines, E.A., and X. Sun. 2014. Tissue crosstalk in lung development. J Cell Biochem 115 (9): 1469–77. https://doi.org/10.1002/jcb.24811.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reeves, S.R., T. Kolstad, T.Y. Lien, S. Herrington-Shaner, and J.S. Debley. 2015. Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children. Respir Res 16 (1): 21. https://doi.org/10.1186/s12931-015-0185-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill, C., J. Li, D. Liu, F. Conforti, C.J. Brereton, L. Yao, Y. Zhou, A. Alzetani, S.J. Chee, B.G. Marshall, S.V. Fletcher, D. Hancock, C.H. Ottensmeier, A.J. Steele, J. Downward, L. Richeldi, X. Lu, D.E. Davies, M.G. Jones, and Y. Wang. 2019. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis 10 (8): 591. https://doi.org/10.1038/s41419-019-1820-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osei, E.T., J.A. Noordhoek, T.L. Hackett, A.I. Spanjer, D.S. Postma, W. Timens, C.A. Brandsma, and I.H. Heijink. 2016. Interleukin-1α drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD. Eur Respir J 48 (2): 359–69. https://doi.org/10.1183/13993003.01911-2015.

Article  CAS  PubMed  Google Scholar 

Waxman, A.B., O. Einarsson, T. Seres, R.G. Knickelbein, J.B. Warshaw, R. Johnston, R.J. Homer, and J.A. Elias. 1998. Targeted lung expression of interleukin-11 enhances murine tolerance of 100% oxygen and diminishes hyperoxia-induced DNA fragmentation. J Clin Invest 101 (9): 1970–82. https://doi.org/10.1172/JCI1337.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dagoneau, N., D. Scheffer, C. Huber, L.I. Al-Gazali, M. Di Rocco, A. Godard, J. Martinovic, A. Raas-Rothschild, S. Sigaudy, S. Unger, S. Nicole, B. Fontaine, J.L. Taupin, J.F. Moreau, A. Superti-Furga, M. Le Merrer, J. Bonaventure, A. Munnich, L. Legeai-Mallet, and V. Cormier-Daire. 2004. Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am J Hum Genet 74 (2): 298–305. https://doi.org/10.1086/381715.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metcalfe, R.D., K. Aizel, C.O. Zlatic, P.M. Nguyen, C.J. Morton, D.S. Lio, H.C. Cheng, R.C.J. Dobson, M.W. Parker, P.R. Gooley, T.L. Putoczki, and M.D.W. Griffin. 2020. The structure of the extracellular domains of human interleukin 11α receptor reveals mechanisms of cytokine engagement. J Biol Chem 295 (24): 8285–8301. https://doi.org/10.1074/jbc.RA119.012351.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mižíková, I., and R.E. Morty. 2015. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2: 91. https://doi.org/10.3389/fmed.2015.00091.

Article  PubMed  Google Scholar 

Alvira, C.M., and R.E. Morty. 2017. Can We Understand the Pathobiology of Bronchopulmonary Dysplasia? J Pediatr 190: 27–37. https://doi.org/10.1016/j.jpeds.2017.08.041.

Article  PubMed  PubMed Central  Google Scholar 

Nakanishi, H., T. Sugiura, J.B. Streisand, S.M. Lonning, and J.D. Roberts Jr. 2007. TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 293 (1): L151-61. https://doi.org/10.1152/ajplung.

Article  CAS  PubMed  Google Scholar 

Eenjes, E., D. Tibboel, R.M.H. Wijnen, J.M. Schnater, and R.J. Rottier. 2022. SOX2 and SOX21 in Lung Epithelial Differentiation and Repair. Int J Mol Sci 23 (21): 13064. https://doi.org/10.3390/ijms232113064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kortekaas, R.K., K.E. Geillinger-Kästle, T. Borghuis, K. Belharch, M. Webster, W. Timens, J.K. Burgess, and R. Gosens. 2023. Interleukin-11 disrupts alveolar epithelial progenitor function. ERJ Open Res 9 (3): 00679–02022. https://doi.org/10.1183/23120541.00679-2022.

Article  PubMed  PubMed Central  Google Scholar 

Bao, T., X. Liu, J. Hu, M. Ma, J. Li, L. Cao, B. Yu, H. Cheng, S. Zhao, and Z. Tian. 2023. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia. Inflammation. https://doi.org/10.1007/s10753-023-01923-1.

Article  PubMed  Google Scholar 

Zhang, X., N. Kiapour, S. Kapoor, J.R. Merrill, Y. Xia, W. Ban, S.M. Cohen, B.R. Midkiff, V. Jewells, Y.I. Shih, and S. Markovic-Plese. 2018. IL-11 antagonist suppresses Th17 cell-mediated neuroinflammation and demyelination in a mouse model of relapsing-remitting multiple sclerosis. Clin Immunol 197: 45–53. https://doi.org/10.1016/j.clim.2018.08.006.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif