Owen, L.S., B.J. Manley, P.G. Davis, and L.W. Doyle. 2017. The evolution of modern respiratory care for preterm infants. Lancet 389 (10079): 1649–1659. https://doi.org/10.1016/S0140-6736(17)30312-4.
Baraldi, E., and M. Filippone. 2007. Chronic lung disease after premature birth. N Engl J Med 357 (19): 1946–55. https://doi.org/10.1056/NEJMra067279.
Article CAS PubMed Google Scholar
Hilgendorff, A., I. Reiss, H. Ehrhardt, O. Eickelberg, and C.M. Alvira. 2014. Chronic lung disease in the preterm infant Lessons learned from animal models. Am J Respir Cell Mol Biol. 50 (2): 233–45. https://doi.org/10.1165/rcmb.2013-0014TR.
Article CAS PubMed PubMed Central Google Scholar
Reddy, S.P., P.M. Hassoun, and R. Brower. 2007. Redox imbalance and ventilator-induced lung injury. Antioxid Redox Signal 9 (11): 2003–12. https://doi.org/10.1089/ars.2007.1770.
Article CAS PubMed Google Scholar
Zhu, X., F. Wang, X. Lei, and W. Dong. 2021. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction. Exp Biol Med (Maywood) 246 (5): 596–606. https://doi.org/10.1177/1535370220975106.
Article CAS PubMed Google Scholar
Zhu, X., X. Lei, J. Wang, and W. Dong. 2020. Protective effects of resveratrol on hyperoxia-induced lung injury in neonatal rats by alleviating apoptosis and ROS production. J Matern Fetal Neonatal Med 33 (24): 4150–4158. https://doi.org/10.1080/14767058.2019.
Article CAS PubMed Google Scholar
Hu, Z., and G. Zhou. 2022. CREB1 Transcriptionally Activates LTBR to Promote the NF-κB Pathway and Apoptosis in Lung Epithelial Cells. Comput Math Methods Med 2022: 9588740. https://doi.org/10.1155/2022/9588740.
Article PubMed PubMed Central Google Scholar
Burgoyne, R.A., A.J. Fisher, and L.A. Borthwick. 2021. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 10 (10): 2763. https://doi.org/10.3390/cells10102763.
Article CAS PubMed PubMed Central Google Scholar
Hinz, B., S.H. Phan, V.J. Thannickal, M. Prunotto, A. Desmoulière, J. Varga, O. De Wever, M. Mareel, and G. Gabbiani. 2012. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180 (4): 1340–55. https://doi.org/10.1016/j.ajpath.2012.02.004.
Article CAS PubMed PubMed Central Google Scholar
Araya, J., S. Cambier, J.A. Markovics, P. Wolters, D. Jablons, A. Hill, W. Finkbeiner, K. Jones, V.C. Broaddus, D. Sheppard, A. Barzcak, Y. Xiao, D.J. Erle, and S.L. Nishimura. 2007. Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients. J Clin Invest 117 (11): 3551–62. https://doi.org/10.1172/JCI32526.
Article CAS PubMed PubMed Central Google Scholar
Ng, B., S.A. Cook, and S. Schafer. 2020. Interleukin-11 signaling underlies fibrosis, parenchymal dysfunction, and chronic inflammation of the airway. Exp Mol Med 52 (12): 1871–1878. https://doi.org/10.1038/s12276-020-00531-5.
Article CAS PubMed PubMed Central Google Scholar
Hines, E.A., and X. Sun. 2014. Tissue crosstalk in lung development. J Cell Biochem 115 (9): 1469–77. https://doi.org/10.1002/jcb.24811.
Article CAS PubMed PubMed Central Google Scholar
Reeves, S.R., T. Kolstad, T.Y. Lien, S. Herrington-Shaner, and J.S. Debley. 2015. Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children. Respir Res 16 (1): 21. https://doi.org/10.1186/s12931-015-0185-7.
Article CAS PubMed PubMed Central Google Scholar
Hill, C., J. Li, D. Liu, F. Conforti, C.J. Brereton, L. Yao, Y. Zhou, A. Alzetani, S.J. Chee, B.G. Marshall, S.V. Fletcher, D. Hancock, C.H. Ottensmeier, A.J. Steele, J. Downward, L. Richeldi, X. Lu, D.E. Davies, M.G. Jones, and Y. Wang. 2019. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis 10 (8): 591. https://doi.org/10.1038/s41419-019-1820-x.
Article CAS PubMed PubMed Central Google Scholar
Osei, E.T., J.A. Noordhoek, T.L. Hackett, A.I. Spanjer, D.S. Postma, W. Timens, C.A. Brandsma, and I.H. Heijink. 2016. Interleukin-1α drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD. Eur Respir J 48 (2): 359–69. https://doi.org/10.1183/13993003.01911-2015.
Article CAS PubMed Google Scholar
Waxman, A.B., O. Einarsson, T. Seres, R.G. Knickelbein, J.B. Warshaw, R. Johnston, R.J. Homer, and J.A. Elias. 1998. Targeted lung expression of interleukin-11 enhances murine tolerance of 100% oxygen and diminishes hyperoxia-induced DNA fragmentation. J Clin Invest 101 (9): 1970–82. https://doi.org/10.1172/JCI1337.
Article CAS PubMed PubMed Central Google Scholar
Dagoneau, N., D. Scheffer, C. Huber, L.I. Al-Gazali, M. Di Rocco, A. Godard, J. Martinovic, A. Raas-Rothschild, S. Sigaudy, S. Unger, S. Nicole, B. Fontaine, J.L. Taupin, J.F. Moreau, A. Superti-Furga, M. Le Merrer, J. Bonaventure, A. Munnich, L. Legeai-Mallet, and V. Cormier-Daire. 2004. Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am J Hum Genet 74 (2): 298–305. https://doi.org/10.1086/381715.
Article CAS PubMed PubMed Central Google Scholar
Metcalfe, R.D., K. Aizel, C.O. Zlatic, P.M. Nguyen, C.J. Morton, D.S. Lio, H.C. Cheng, R.C.J. Dobson, M.W. Parker, P.R. Gooley, T.L. Putoczki, and M.D.W. Griffin. 2020. The structure of the extracellular domains of human interleukin 11α receptor reveals mechanisms of cytokine engagement. J Biol Chem 295 (24): 8285–8301. https://doi.org/10.1074/jbc.RA119.012351.
Article CAS PubMed PubMed Central Google Scholar
Mižíková, I., and R.E. Morty. 2015. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2: 91. https://doi.org/10.3389/fmed.2015.00091.
Alvira, C.M., and R.E. Morty. 2017. Can We Understand the Pathobiology of Bronchopulmonary Dysplasia? J Pediatr 190: 27–37. https://doi.org/10.1016/j.jpeds.2017.08.041.
Article PubMed PubMed Central Google Scholar
Nakanishi, H., T. Sugiura, J.B. Streisand, S.M. Lonning, and J.D. Roberts Jr. 2007. TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 293 (1): L151-61. https://doi.org/10.1152/ajplung.
Article CAS PubMed Google Scholar
Eenjes, E., D. Tibboel, R.M.H. Wijnen, J.M. Schnater, and R.J. Rottier. 2022. SOX2 and SOX21 in Lung Epithelial Differentiation and Repair. Int J Mol Sci 23 (21): 13064. https://doi.org/10.3390/ijms232113064.
Article CAS PubMed PubMed Central Google Scholar
Kortekaas, R.K., K.E. Geillinger-Kästle, T. Borghuis, K. Belharch, M. Webster, W. Timens, J.K. Burgess, and R. Gosens. 2023. Interleukin-11 disrupts alveolar epithelial progenitor function. ERJ Open Res 9 (3): 00679–02022. https://doi.org/10.1183/23120541.00679-2022.
Article PubMed PubMed Central Google Scholar
Bao, T., X. Liu, J. Hu, M. Ma, J. Li, L. Cao, B. Yu, H. Cheng, S. Zhao, and Z. Tian. 2023. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia. Inflammation. https://doi.org/10.1007/s10753-023-01923-1.
Zhang, X., N. Kiapour, S. Kapoor, J.R. Merrill, Y. Xia, W. Ban, S.M. Cohen, B.R. Midkiff, V. Jewells, Y.I. Shih, and S. Markovic-Plese. 2018. IL-11 antagonist suppresses Th17 cell-mediated neuroinflammation and demyelination in a mouse model of relapsing-remitting multiple sclerosis. Clin Immunol 197: 45–53. https://doi.org/10.1016/j.clim.2018.08.006.
Comments (0)