Bosshardt, D.D., and K.A. Selvig. 1997. Dental cementum: The dynamic tissue covering of the root. Periodontology 2000 (13): 41–75. https://doi.org/10.1111/j.1600-0757.1997.tb00095.x.
D’Errico, J.A., et al. 2000. Employing a transgenic animal model to obtain cementoblasts in vitro. Journal of Periodontology 71: 63–72. https://doi.org/10.1902/jop.2000.71.1.63.
Article CAS PubMed Google Scholar
Bosshardt, D.D. 2005. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? Journal of Dental Research 84: 390–406. https://doi.org/10.1177/154405910508400501.
Article CAS PubMed Google Scholar
Li, X., et al. 2019. Severe periodontitis may influence cementum and dental pulp through inflammation, oxidative stress, and apoptosis. Journal of Periodontology 90: 1297–1306. https://doi.org/10.1002/JPER.18-0604.
Article CAS PubMed Google Scholar
De Rossi, A., et al. 2020. Fibroblast growth factor receptor 2 expression in apical periodontitis in mice. International Endodontic Journal 53: 1111–1119. https://doi.org/10.1111/iej.13315.
Nemoto, E., R.P. Darveau, B.L. Foster, G.R. Nogueira-Filho, and M.J. Somerman. 2006. Regulation of cementoblast function by P. gingivalis lipopolysaccharide via TLR2. Journal of Dental Research 85: 733–738. https://doi.org/10.1177/154405910608500809.
Article CAS PubMed Google Scholar
Kitano, T., Y. Mikami, T. Iwase, M. Asano, and K. Komiyama. 2016. Loop-mediated isothermal amplification combined with PCR and immunohistochemistry for detecting Porphyromonas gingivalis in periapical periodontitis. Journal of Oral Science 58: 163–169. https://doi.org/10.2334/josnusd.15-0665.
Article CAS PubMed Google Scholar
How, K.Y., K.P. Song, and K.G. Chan. 2016. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Frontiers in Microbiology 7: 53. https://doi.org/10.3389/fmicb.2016.00053.
Article PubMed PubMed Central Google Scholar
Darveau, R.P., G. Hajishengallis, and M.A. Curtis. 2012. Porphyromonas gingivalis as a potential community activist for disease. Journal of Dental Research 91: 816–820. https://doi.org/10.1177/0022034512453589.
Article CAS PubMed PubMed Central Google Scholar
Huang, X., et al. 2022. Ckip-1 Mediates P. gingivalis-Suppressed Cementoblast Mineralization. Journal of Dental Research 101: 599–608. https://doi.org/10.1177/00220345211054744.
Article CAS PubMed Google Scholar
Ma, L., et al. 2019. CXXC5 Mediates P gingivalis-suppressed Cementoblast Functions Partially via MAPK Signaling Network. International Journal of Biological Sciences 15: 1685–1695. https://doi.org/10.7150/ijbs.35419.
Article CAS PubMed PubMed Central Google Scholar
Peng, Y., et al. 2023. Tet methylcytosine dioxygenase 1 modulates Porphyromonas gingivalis-triggered pyroptosis by regulating glycolysis in cementoblasts. Annals of the New York Academy of Sciences 1523: 119–134. https://doi.org/10.1111/nyas.14979.
Article CAS PubMed Google Scholar
Djebali, S., et al. 2012. Landscape of transcription in human cells. Nature 489: 101–108. https://doi.org/10.1038/nature11233.
Article CAS PubMed PubMed Central Google Scholar
Bridges, M. C., A.C. Daulagala, and A. Kourtidis. 2021. LNCcation: lncRNA localization and function. Journal of Cell Biology 220. https://doi.org/10.1083/jcb.202009045.
Han, Y., et al. 2022. Long non-coding RNA SNHG5 mediates periodontal inflammation through the NF-kappaB signalling pathway. Journal of Clinical Periodontology 49: 1038–1051. https://doi.org/10.1111/jcpe.13684.
Article CAS PubMed Google Scholar
Guo, K., K. Qian, Y. Shi, T. Sun, and Z. Wang. 2021. LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death & Disease 12: 1097. https://doi.org/10.1038/s41419-021-04386-0.
Bergmann, J.H., et al. 2015. Regulation of the ESC transcriptome by nuclear long noncoding RNAs. Genome Research 25: 1336–1346. https://doi.org/10.1101/gr.189027.114.
Article CAS PubMed PubMed Central Google Scholar
Yue, F., et al. 2014. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515: 355–364. https://doi.org/10.1038/nature13992.
Article CAS PubMed PubMed Central Google Scholar
Huang, H., et al. 2022. Expression profile analysis of long noncoding RNA and messenger RNA during mouse cementoblast mineralization. Journal of Periodontal Research 57: 1159–1168. https://doi.org/10.1111/jre.13053.
Article CAS PubMed Google Scholar
Hayden, M.S., and S. Ghosh. 2014. Regulation of NF-kappaB by TNF family cytokines. Seminars in Immunology 26: 253–266. https://doi.org/10.1016/j.smim.2014.05.004.
Article CAS PubMed PubMed Central Google Scholar
Guan, X., et al. 2021. Crosstalk between Wnt/beta-catenin signaling and NF-kappaB signaling contributes to apical periodontitis. International Immunopharmacology 98: 107843. https://doi.org/10.1016/j.intimp.2021.107843.
Article CAS PubMed Google Scholar
Silva, M.J., et al. 2011. The role of iNOS and PHOX in periapical bone resorption. Journal of Dental Research 90: 495–500. https://doi.org/10.1177/0022034510391792.
Article CAS PubMed Google Scholar
D’Errico, J.A., et al. 1999. Immortalized cementoblasts and periodontal ligament cells in culture. Bone 25: 39–47. https://doi.org/10.1016/s8756-3282(99)00096-4.
Article CAS PubMed Google Scholar
Jensen, E.C. 2013. Quantitative analysis of histological staining and fluorescence using ImageJ. Anatomical Record (Hoboken) 296: 378–381. https://doi.org/10.1002/ar.22641.
Wang, C., H. Liao, H. Sun, Y. Zhang, and Z. Cao. 2018. MicroRNA-3064-3p regulates the differentiation of cementoblasts through targeting DKK1. Journal of Periodontal Research 53: 705–713. https://doi.org/10.1111/jre.12554.
Article CAS PubMed Google Scholar
Liao, H.Q., et al. 2019. MiR-361-3p/Nfat5 signaling axis controls cementoblast differentiation. Journal of Dental Research 98: 1131–1139. https://doi.org/10.1177/0022034519864519.
Article CAS PubMed Google Scholar
Wang, X., et al. 2017. MicroRNA-155-3p mediates TNF-alpha-inhibited cementoblast differentiation. Journal of Dental Research 96: 1430–1437. https://doi.org/10.1177/0022034517718790.
Article CAS PubMed Google Scholar
Akkaoui, J., et al. 2021. Contribution of Porphyromonas gingivalis lipopolysaccharide to experimental periodontitis in relation to aging. Geroscience 43: 367–376. https://doi.org/10.1007/s11357-020-00258-1.
Article CAS PubMed Google Scholar
Xu, W., W. Zhou, H. Wang, and S. Liang. 2020. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Advances in Protein Chemistry and Structural Biology 120: 45–84. https://doi.org/10.1016/bs.apcsb.2019.12.001.
Comments (0)