Murashige, D., C. Jang, M. Neinast, J.J. Edwards, A. Cowan, M.C. Hyman, et al. 2020. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science (New York, NY). 370 (6514): 364–368.
Taleb, S. 2019. Tryptophan dietary impacts gut barrier and metabolic diseases. Frontiers in Immunology 10: 2113.
Article CAS PubMed PubMed Central Google Scholar
Mangge, H., I. Stelzer, E.Z. Reininghaus, D. Weghuber, T.T. Postolache, and D. Fuchs. 2014. Disturbed tryptophan metabolism in cardiovascular disease. Current Medicinal Chemistry 21 (17): 1931–1937.
Article CAS PubMed PubMed Central Google Scholar
Schrocksnadel, K., B. Wirleitner, C. Winkler, and D. Fuchs. 2006. Monitoring tryptophan metabolism in chronic immune activation. Clinica Chimica Acta 364 (1–2): 82–90.
Lund, A., J.E. Nordrehaug, G. Slettom, S.H. Solvang, E.K. Pedersen, Ø. Midttun, et al. 2020. Plasma kynurenines and prognosis in patients with heart failure. PLoS ONE 15 (1): e0227365.
Article CAS PubMed PubMed Central Google Scholar
Wang, Y., J. Song, K. Yu, D. Nie, C. Zhao, L. Jiao, et al. 2023. Indoleamine 2,3-dioxygenase 1 deletion-mediated kynurenine insufficiency inhibits pathological cardiac hypertrophy. Hypertension 80 (10): 2099–2111.
Article CAS PubMed Google Scholar
Laurans, L., N. Venteclef, Y. Haddad, M. Chajadine, F. Alzaid, S. Metghalchi, et al. 2018. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nature Medicine. 24 (8): 1113–1120.
Article CAS PubMed Google Scholar
Cole, J.E., N. Astola, A.P. Cribbs, M.E. Goddard, I. Park, P. Green, et al. 2015. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proceedings of the National Academy of Sciences United States of America 112 (42): 13033–13038.
Yun, T.J., J.S. Lee, K. Machmach, D. Shim, J. Choi, Y.J. Wi, et al. 2016. Indoleamine 2,3-dioxygenase-expressing aortic plasmacytoid dendritic cells protect against atherosclerosis by induction of regulatory T cells. Cell Metabolism. 24 (6): 886.
Article CAS PubMed Google Scholar
Xue, C., G. Li, Q. Zheng, X. Gu, Q. Shi, Y. Su, et al. 2023. Tryptophan metabolism in health and disease. Cell Metabolism. 35 (8): 1304–1326.
Article CAS PubMed Google Scholar
Yan, J., K. Kothur, S. Mohammad, J. Chung, S. Patel, H.F. Jones, et al. 2023. CSF neopterin, quinolinic acid and kynurenine/tryptophan ratio are biomarkers of active neuroinflammation. eBioMedicine 91: 104589.
Article CAS PubMed PubMed Central Google Scholar
Queiroz, R.F., C.P. Stanley, K. Wolhuter, S.M.Y. Kong, R. Rajivan, N. McKinnon, et al. 2021. Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation. Nature Communications. 12 (1): 6626.
Article CAS PubMed PubMed Central Google Scholar
Pires, A.S., G. Sundaram, B. Heng, S. Krishnamurthy, B.J. Brew, and G.J. Guillemin. 2022. Recent advances in clinical trials targeting the kynurenine pathway. Pharmacology & Therapeutics. 236: 108055.
Zakharia Y., R.R. McWilliams, O. Rixe, J. Drabick, M.F. Shaheen, K.F. Grossmann, et al. 2021. Phase II trial of the IDO pathway inhibitor indoximod plus pembrolizumab for the treatment of patients with advanced melanoma. Journal for Immunotherapy of Cancer 9(6): e002057. https://doi.org/10.1136/jitc-2020-002057.
Burger, P.M., S. Koudstaal, A. Mosterd, A.T.L. Fiolet, M. Teraa, M.G. van der Meer, et al. 2023. C-reactive protein and risk of incident heart failure in patients with cardiovascular disease. Journal of the American College of Cardiology. 82 (5): 414–426.
Article CAS PubMed Google Scholar
Hunt, S.A., W.T. Abraham, M.H. Chin, A.M. Feldman, G.S. Francis, T.G. Ganiats, et al. 2009. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119 (14): e391-479.
Miller, L., E. Birks, M. Guglin, H. Lamba, and O.H. Frazier. 2019. Use of ventricular assist devices and heart transplantation for advanced heart failure. Circulation Research 124 (11): 1658–1678.
Article CAS PubMed Google Scholar
Yuan, M., S.B. Breitkopf, X. Yang, and J.M. Asara. 2012. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nature Protocols. 7 (5): 872–881.
Article CAS PubMed PubMed Central Google Scholar
Rebnord, E.W., E. Strand, Ø. Midttun, G.F.T. Svingen, M.H.E. Christensen, P.M. Ueland, et al. 2017. The kynurenine:Tryptophan ratio as a predictor of incident type 2 diabetes mellitus in individuals with coronary artery disease. Diabetologia 60 (9): 1712–1721.
Article CAS PubMed PubMed Central Google Scholar
Theiler-Schwetz V, C. Trummer, M.R. Grubler, M.H. Keppel, A. Zittermann, A. Tomaschitz, et al. 2023. Associations of parameters of the tryptophan-kynurenine pathway with cardiovascular risk factors in hypertensive patients. Nutrients 15(2):256. https://doi.org/10.3390/nu15020256.
Melhem, N.J., M. Chajadine, I. Gomez, K.Y. Howangyin, M. Bouvet, C. Knosp, et al. 2021. Endothelial cell indoleamine 2, 3-dioxygenase 1 alters cardiac function after myocardial infarction through kynurenine. Circulation 143 (6): 566–580.
Article CAS PubMed Google Scholar
Dschietzig, T.B., K.H. Kellner, K. Sasse, F. Boschann, R. Klusener, J. Ruppert, et al. 2019. Plasma kynurenine predicts severity and complications of heart failure and associates with established biochemical and clinical markers of disease. Kidney & Blood Pressure Research 44 (4): 765–776.
Murphy, S.P., R. Kakkar, C.P. McCarthy, and J.L. Januzzi Jr. 2020. Inflammation in heart failure: JACC state-of-the-art review. Journal of the American College of Cardiology 75 (11): 1324–1340.
Anand, I.S., R. Latini, V.G. Florea, M.A. Kuskowski, T. Rector, S. Masson, et al. 2005. C-reactive protein in heart failure: Prognostic value and the effect of valsartan. Circulation 112 (10): 1428–1434.
Article CAS PubMed Google Scholar
Koller, L., M. Kleber, G. Goliasch, P. Sulzgruber, H. Scharnagl, G. Silbernagel, et al. 2014. C-reactive protein predicts mortality in patients referred for coronary angiography and symptoms of heart failure with preserved ejection fraction. European Journal of Heart Failure 16 (7): 758–766.
Article CAS PubMed Google Scholar
Cainzos-Achirica, M., C. Enjuanes, P. Greenland, J.W. McEvoy, M. Cushman, Z. Dardari, et al. 2018. The prognostic value of interleukin 6 in multiple chronic diseases and all-cause death: The Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 278: 217–225.
Article CAS PubMed Google Scholar
Wirleitner, B., V. Rudzite, G. Neurauter, C. Murr, U. Kalnins, A. Erglis, et al. 2003. Immune activation and degradation of tryptophan in coronary heart disease. European Journal of Clinical Investigation 33 (7): 550–554.
Article CAS PubMed Google Scholar
Kwidzinski, E., J. Bunse, O. Aktas, D. Richter, L. Mutlu, F. Zipp, et al. 2005. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. The FASEB Journal 19 (10): 1347–1349.
Article CAS PubMed Google Scholar
Dick, S.A., and S. Epelman. 2016. Chronic heart failure and inflammation: What do we really know? Circulation Research 119 (1): 159–176.
Article CAS PubMed Google Scholar
Bracho-Sanchez, E., F.G. Rocha, S.K. Bedingfield, B.D. Partain, S.L. Macias, M.A. Brusko, et al. 2023. Suppression of local inflammation via galectin-anchored indoleamine 2,3-dioxygenase. Nature Biomedical Engineering 7 (9): 1156–1169.
Article CAS PubMed PubMed Central Google Scholar
Agus, A., K. Clement, and H. Sokol. 2021. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70 (6): 1174–1182.
Comments (0)