Pathophysiological role of Na–Cl cotransporter in kidneys, blood pressure, and metabolism

Portioli C, Ruiz Munevar MJ, De Vivo M, Cancedda L. Cation-coupled chloride cotransporters: chemical insights and disease implications. Trends Chem. 2021;3(10):832–49. https://doi.org/10.1016/j.trechm.2021.05.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang L, Shimosawa T. Molecular mechanisms of Na–Cl cotransporter in relation to hypertension in chronic kidney disease. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms24010286.

Article  PubMed  PubMed Central  Google Scholar 

Meor Azlan NF, Koeners MP, Zhang J. Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension. Acta Pharm Sin B. 2021;11(5):1117–28. https://doi.org/10.1016/j.apsb.2020.09.009.

Article  CAS  PubMed  Google Scholar 

Poulsen SB, Christensen BM. Long-term aldosterone administration increases renal Na(+)-Cl(−) cotransporter abundance in late distal convoluted tubule. Am J Physiol Renal Physiol. 2017;313(3):F756–66. https://doi.org/10.1152/ajprenal.00352.2016.

Article  CAS  PubMed  Google Scholar 

Blanchard A, Bockenhauer D, Bolignano D, Calo LA, Cosyns E, Devuyst O, et al. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017;91(1):24–33. https://doi.org/10.1016/j.kint.2016.09.046.

Article  PubMed  Google Scholar 

Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, et al. Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol. 2011;22(4):693–703. https://doi.org/10.1681/ASN.2010090907.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellison DH. The thiazide-sensitive na-cl cotransporter and human disease: reemergence of an old player. J Am Soc Nephrol. 2003;14(2):538–40. https://doi.org/10.1681/ASN.V142538.

Article  PubMed  Google Scholar 

Fan M, Zhang J, Lee CL, Zhang J, Feng L. Structure and thiazide inhibition mechanism of the human Na-Cl cotransporter. Nature. 2023;614(7949):788–93. https://doi.org/10.1038/s41586-023-05718-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamba G. The thiazide-sensitive Na+-Cl- cotransporter: molecular biology, functional properties, and regulation by WNKs. Am J Physiol Renal Physiol. 2009;297(4):F838–48. https://doi.org/10.1152/ajprenal.00159.2009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delpire E, Kaplan MR, Plotkin MD, Hebert SC. The Na-(K)-Cl cotransporter family in the mammalian kidney: molecular identification and function(s). Nephrol Dial Transplant. 1996;11(10):1967–73. https://doi.org/10.1093/oxfordjournals.ndt.a027081.

Article  CAS  PubMed  Google Scholar 

Chi G, Ebenhoch R, Man H, Tang H, Tremblay LE, Reggiano G, et al. Phospho-regulation, nucleotide binding and ion access control in potassium-chloride cotransporters. EMBO J. 2021;40(14): e107294. https://doi.org/10.15252/embj.2020107294.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chew TA, Orlando BJ, Zhang J, Latorraca NR, Wang A, Hollingsworth SA, et al. Structure and mechanism of the cation-chloride cotransporter NKCC1. Nature. 2019;572(7770):488–92. https://doi.org/10.1038/s41586-019-1438-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, et al. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 2013;83(5):811–24. https://doi.org/10.1038/ki.2013.14.

Article  CAS  PubMed  Google Scholar 

Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12. https://doi.org/10.1126/science.1062844.

Article  CAS  PubMed  Google Scholar 

Rojas-Vega L, Reyes-Castro LA, Ramirez V, Bautista-Perez R, Rafael C, Castaneda-Bueno M, et al. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation. Am J Physiol Renal Physiol. 2015;308(8):F799-808. https://doi.org/10.1152/ajprenal.00447.2014.

Article  CAS  PubMed  Google Scholar 

Keyhani S, Scobie JV, Hebert PL, McLaughlin MA. Gender disparities in blood pressure control and cardiovascular care in a national sample of ambulatory care visits. Hypertension. 2008;51(4):1149–55. https://doi.org/10.1161/HYPERTENSIONAHA.107.107342.

Article  CAS  PubMed  Google Scholar 

Everett BM, Glynn RJ, Danielson E, Ridker PM, Val MI. Combination therapy versus monotherapy as initial treatment for stage 2 hypertension: a prespecified subgroup analysis of a community-based, randomized, open-label trial. Clin Ther. 2008;30(4):661–72. https://doi.org/10.1016/j.clinthera.2008.04.013.

Article  CAS  PubMed  Google Scholar 

Li J, Hatano R, Xu S, Wan L, Yang L, Weinstein AM, et al. Gender difference in kidney electrolyte transport. I. Role of AT(1a) receptor in thiazide-sensitive Na(+)-Cl(−) cotransporter activity and expression in male and female mice. Am J Physiol Renal Physiol. 2017;313(2):F505–13. https://doi.org/10.1152/ajprenal.00087.2017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Sun C, Gerdes N, Liu C, Liao M, Liu J, et al. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat Med. 2015;21(7):820–6. https://doi.org/10.1038/nm.3890.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Luo S, Wang M, Cao Q, Zhang Z, Huang Q, et al. Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation. Nat Commun. 2022;13(1):7582. https://doi.org/10.1038/s41467-022-35256-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu CL, Ren J, Wang Y, Zhang X, Sukhova GK, Liao M, et al. Adipocytes promote interleukin-18 binding to its receptors during abdominal aortic aneurysm formation in mice. Eur Heart J. 2020;41(26):2456–68. https://doi.org/10.1093/eurheartj/ehz856.

Article  CAS  PubMed  Google Scholar 

Reyes JV, Medina PMB. Renal calcium and magnesium handling in Gitelman syndrome. Am J Transl Res. 2022;14(1):1–19.

CAS  PubMed  PubMed Central  Google Scholar 

Magyar CE, White KE, Rojas R, Apodaca G, Friedman PA. Plasma membrane Ca2+-ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells. Am J Physiol Renal Physiol. 2002;283(1):F29-40. https://doi.org/10.1152/ajprenal.00252.2000.

Article  CAS  PubMed  Google Scholar 

Lambers TT, Mahieu F, Oancea E, Hoofd L, de Lange F, Mensenkamp AR, et al. Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport. EMBO J. 2006;25(13):2978–88. https://doi.org/10.1038/sj.emboj.7601186.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellison DH, Maeoka Y, McCormick JA. Molecular mechanisms of renal magnesium reabsorption. J Am Soc Nephrol. 2021;32(9):2125–36. https://doi.org/10.1681/ASN.2021010042.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21(1):39–50. https://doi.org/10.1016/j.cmet.2014.12.006.

Article  CAS 

Comments (0)

No login
gif