Chernyavskii, F.B., Mlekopitayushchie krainego severo-vostoka Sibiri (Mammals of the Extreme Northeastern Siberia), Mocow: Nauka, 1984.
Yudin, B.S., Nasekomoyadnye mlekopitayushchie Sibiri (Insectivorous Mammals of Siberia), Novosibirsk: Nauka, 1989.
Dokuchaev, N.E., Comparative analysis of two common shrew subspecies from the mainland of northeast Asia, Evolyutsionnye i geneticheskie issledovaniya mlekopitayushchikh (Evolutionary and Genetic Studies of Mammals) (Proc. All-Union Symp.), Vladivostok: Dal’nevost. Otd. Akad. Nauk SSSR, 1990b, part 2, pp. 80—82.
Okhotina, MV., Subspecies taxonomic revision of the Far Eastern shrews (Insectivora, Sorex) with a description of new subspecies, Voprosy sistematiki, faunistiki i paleontologii melkikh mlekopitayushchikh (Issues in Taxonomy, Faunistics and Paleontology of Small Mammals), Trudy Zoologicheskogo Instituta Akademii Nauk SSSR (Proceedings of the Zoological Institute of the USSR Academy of Sciences), St. Petersburg: Akad. Nauk SSSR, 1993, vol. 243, pp. 58–70.
Dokuchaev, N.E., Ekologiya burozubok Severo-Vostochnoi Azii (Ecology of Shrews in Northeast Asia), Moscow: Nauka, 1990.
Grigoryeva, O.O., Borisov, Y.M., Stakheev, V.V., et al., Genetic structure of the common shrew Sorex araneus L. 1758 (Mammalia, Lipotyphla) in continuous and fragmented areas, Russ. J. Genet., 2015, vol. 51, no. 6, pp. 607–618. https://doi.org/10.1134/S1022795415030047
Kovaleva, V.Yu., Litvinov, Yu.N., and Efimov, V.M., Shrews (Soricidae, Eulipotyphla) of Siberia and the Far East: combination and searching for congruence of molecular-genetic and morphological data, Zool. Zh., 2013, vol. 92, no. 11, pp. 1383–1398. https://doi.org/10.7868/S0044513413110081
Ohdachi, S., Masuda, R., Abe, H., et al., Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences, Zool. Sci., 1997, vol. 14, no. 3, pp. 527–532.
Ohdachi, S., Dokuchaev, N.E., Hasegawa, M., and Masuda, R., Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences, Mol. Ecol., 2001, vol. 10, no. 9, pp. 2199–2213. https://doi.org/10.1046/j.1365-294x.2001.01359.x
Article CAS PubMed Google Scholar
Ohdachi, S.D., Abe, H., and Han, S.-H., Phylogenetical positions of Sorex sp. (Insectivora, Mammalia) from Cheju island and S. caecutiens from the Korean peninsula, inferred from mitochondrial cytochrome b gene sequences, Zool. Sci., 2003, vol. 20, pp. 91–95. https://doi.org/10.2108/zsj.20.91
Ohdachi, S.D., Yoshizawa, K., Hanski, I., et al., Intraspecific phylogeny and nucleotide diversity of the least shrews, the Sorex minutissimus—S. yukonicus complex, based on nucleotide sequences of the mitochondrial cytochrome b gene and the control region, Mamm. Study, 2012, vol. 37, pp. 281–297. https://doi.org/10.3106/041.037.0403
Demboski, J.R. and Cook, J.A., Phylogenetic diversification within the Sorex cinereus group (Soricidae), J. Mammal., 2003, vol. 84, no. 1, pp. 144–158. https://doi.org/10.1644/1545-1542(2003)084<0144:P-DWTSC>2.0.CO;2
Bannikova, A.A., Dokuchaev, N.E., Yudina, E.V., et al., Holarctic phylogeography of the tundra shrew (Sorex tundrensis) based on mitochondrial genes, Biol. J. Linn. Soc., 2010, vol. 101, no. 3, pp. 721–746. https://doi.org/10.1111/j.1095-8312.2010.01510.x
Bannikova, A.A., Chernetskaya, D.M., Raspopova, A.A., et al., Evolutionary history of the genus Sorex as inferred from multigene data and molecular clock of major divergence events with the implications for systematics, Zool. Scr., 2018, vol. 47, no. 5, pp. 518–538. https://doi.org/10.1111/zsc.12302
Esteva, M., Cervantes, F.A., Brant, S.V., and Cook, J.A., Molecular phylogeny of long-tailed shrews (genus Sorex) from México and Guatemala, Zootaxa, 2010, vol. 2615, pp. 47–65. https://doi.org/10.11646/zootaxa.2615.1.3
Koh, H.S., Jang, K.H., In, S.T., et al., Genetic distinctness of Sorex caecutiens hallamontanus (Soricomorpha: Mammalia) from Jeju Island in Korea: cytochrome oxidase I and cytochrome b sequence analyses, Anim. Syst., Evol. Diversity, 2012, vol. 28, no. 3, pp. 215–219. https://doi.org/10.5635/ASED.2012.28.3.215
Pereverzeva, V.V., Dokuchaev, N.E., Primak, A.A., and Kiselev, S.V., Genetic variation of the Laxmann’s shrew (Sorex caecutiens Laxmann, 1788) of the Northern Priokhotye, Vestn. Sev.-Vost. Nauchn. Tsentra, Dal’nevost. Otd. Ross. Akad. Nauk, 2019, no. 1, pp. 103–115.
Jin, Z.-M., Zhu, L., and Ma, J.-Z., Sequencing and analysis of the complete mitochondrial genome of the masked shrew (Sorex caecutiens) from China, Mitochondrial DNA, Part B, 2017, vol. 2, no. 2, pp. 486–488.
Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729. https://doi.org/10.1093/molbev/mst197
Article CAS PubMed PubMed Central Google Scholar
Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47–50. https://doi.org/10.1177/117693430500100003
Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585–595. https://doi.org/10.1093/genetics/123.3.585
Article CAS PubMed PubMed Central Google Scholar
Fu, Y.X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, pp. 915–925.
Article CAS PubMed PubMed Central Google Scholar
Bandelt, H.-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48.
Article CAS PubMed Google Scholar
Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.
Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.
Zardoya, R. and Meyer, A., Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates, Mol. Biol. Evol., 1996, vol. 13, no. 7, pp. 933–942.
Article CAS PubMed Google Scholar
Hassanin, A., Lecointre, G., and Tiller, S., The “evolutionary signal” of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny, C. R. Acad. Sci., 1998, vol. 321, no. 7, pp. 611–620.
Abramson, N.I., Phylogeography: results, issues and perspectives, Inf. Vestn. Vavilovskogo O-va. Genet. Sel., 2007, vol. 11, no. 2, pp. 307–331.
Dokuchaev, N.E., The role of the Beringian landmass in the settlement and formation of new forms in shrews, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 1997, no. 2, pp. 54–61.
Dokuchaev, N.E. and Gulyaev, V.D., Quaternary history of shrews of Northeast Asia in view of helminthological data, Biologiya nasekomoyadnykh mlekopitayushchikh (Biology of Insectivorous Mammals) (Proc. IIIrd All-Russ. Sci. Conf. on Biology of Insectivorous Mammals), Novosibirsk: TsERIS, 2007, pp. 38–40.
Pereverzeva, V.V., Primak, A.A., and Dubinin, E.A., Genetic structure of Northern red-backed vole (Myodes (=Clethrionomys) rutilus Pallas, 1779) populations of the northern Priokhotye determined by sequence variation of the mtDNA cytochrome b gene, Russ. J. Genet.: Appl. Res., 2014, vol. 4, no. 1, pp. 27–34. https://doi.org/10.1134/S2079059714010079
Pereverzeva, V.V., Primak, A.A., Dokuchaev, N.E., et al., Variation of the cytochrome b mtDNA gene of the red-gray vole (Craseomys rufocanus Sundevall, 1846) of the Northern Priokhotye and the river Kolyma basin, Vestn. Sev.-Vost. Nauchn. Tsentra, Dal’nevost. Otd. Ross. Akad. Nauk, 2018, no. 1, pp. 101–112.
Pereverzeva, V.V., Dokuchaev, N.E., Primak, A.A., et al., Variation of the cytochrome b mtDNA gene of the tundra vole (Alexandromys oeconomus Pallas, 1776) of the Northern Priokhotye, Usp. Sovrem. Biol., 2022, vol. 142, no. 1, pp. 90–104. https://doi.org/10.31857/S0042132422010057
Comments (0)