Age-specific composition of milk microbiota in Tibetan sheep and goats

Ackerman DL, Doster RS, Weitkamp JH, Aronoff DM, Gaddy JA, Townsend SD (2017) Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against group B Streptococcus. ACS Infect Dis 3(8):595–605. https://doi.org/10.1021/acsinfecdis.7b00064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akinsoyinu AO, Mba AU, Olubajo FO (1977) Studies on milk yield and composition of the West African dwarf goat in Nigeria. J Dairy Res 44(1):57–62. https://doi.org/10.1017/s0022029900019920

Article  CAS  PubMed  Google Scholar 

Andreas NJ, Kampmann B, Le-Doare KM (2015) Human breast milk: a review on its composition and bioactivity. Early Hum Dev 91(11):629–635. https://doi.org/10.1016/j.earlhumdev.2015.08.013

Article  CAS  PubMed  Google Scholar 

Barreto ÍMLG, Urbano SA, Oliveira CAA, Macêdo CS, Borba LHF, Chags BME, Rangel AHN (2020) Chemical composition and lipid profile of mare colostrum and milk of the quarter horse breed. PLoS One 15(9):e0238921. https://doi.org/10.1371/journal.pone.0238921

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boix-Amorós A, Collado MC, Mira A (2016) Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 7:492. https://doi.org/10.3389/fmicb.2016.00492

Article  PubMed  PubMed Central  Google Scholar 

Brodin P (2022) Immune-microbe interactions early in life: a determinant of health and disease long term. Science 376(6596):945–950. https://doi.org/10.1126/science.abk2189

Article  CAS  PubMed  Google Scholar 

Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A (2012) The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 96(3):544–51. https://doi.org/10.3945/ajcn.112.037382

Article  CAS  PubMed  Google Scholar 

Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain JR (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164(5):859–871. https://doi.org/10.1016/j.cell.2016.01.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen D, Zhao X, Li X, Wang J, Wang C (2018a) Milk compositional changes of Laoshan goat milk from partum up to 261 days postpartum. Anim Sci J 89(9):1355–1363. https://doi.org/10.1111/asj.13062

Article  CAS  PubMed  Google Scholar 

Chen PW, Lin YL, Huang MS (2018b) Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J Food Drug Anal 26(4):1235–1244. https://doi.org/10.1016/j.jfda.2018.03.004

Article  PubMed  PubMed Central  Google Scholar 

Chen W, Mi J, Lv N, Gao J, Cheng J, Wu R, Ma J, Lan T, Liao X (2018c) Lactation stage-dependency of the sow milk microbiota. Front Microbiol 9:945. https://doi.org/10.3389/fmicb.2018.00945

Article  PubMed  PubMed Central  Google Scholar 

Ding D, Wang M, Wu M, Gan C, Wu P (2021) Condition-specific molecular network analysis revealed that flagellar proteins are involved in electron transfer processes of Shewanella piezotolerans WP3. Genet Res (Camb) 2021:9953783. https://doi.org/10.1155/2021/9953783

Article  CAS  PubMed  Google Scholar 

Ferreira-Halder CV, Faria AVS, Andrade SS (2017) Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol 31(6):643–648. https://doi.org/10.1016/j.bpg.2017.09.011

Article  CAS  PubMed  Google Scholar 

Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA (2017) Systematic review of the human milk microbiota. Nutr Clin Pract 32(3):354–364. https://doi.org/10.1177/0884533616670150

Article  PubMed  Google Scholar 

Francino MP (2014) Early development of the gut microbiota and immune health. Pathogens 3(3):769–90. https://doi.org/10.3390/pathogens3030769

Article  PubMed  PubMed Central  Google Scholar 

Geng J, Jin W, Hao J, Huo M, Zhang Y, Xie C, Zhao B, Li Y (2021) Effects of dietary modified bazhen on reproductive performance, immunity, breast milk microbes, and metabolome characterization of Sows. Front Microbiol 12:758224. https://doi.org/10.3389/fmicb.2021.758224

Article  PubMed  PubMed Central  Google Scholar 

Guo J, Li P, Zhang K, Zhang L, Wang X, Li L, Zhang H (2020) Distinct stage changes in early-life colonization and acquisition of the gut microbiota and its correlations with volatile fatty acids in goat kids. Front Microbiol 11:584742. https://doi.org/10.3389/fmicb.2020.584742

Article  PubMed  PubMed Central  Google Scholar 

Han D, Yan Q, Liu J, Jiang Z, Yang S (2021) Transcriptomic analysis of Pediococcus pentosaceus reveals carbohydrate metabolic dynamics under lactic acid stress. Front Microbiol 12:736411. https://doi.org/10.3389/fmicb.2021.736411

Article  PubMed  PubMed Central  Google Scholar 

Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258. https://doi.org/10.1146/annurev.micro.61.080706.093257

Article  CAS  PubMed  Google Scholar 

Huertas-Díaz L, Kyhnau R, Ingribelli E, Neuzil-Bunesova V, Li Q, Sasaki M, Lauener RP, Roduit C, Frei R, Study Group CC, Sundekilde U, Schwab C (2023) Breastfeeding and the major fermentation metabolite lactate determine occurrence of Peptostreptococcaceae in infant feces. Gut Microbes 15(1):2241209. https://doi.org/10.1080/19490976.2023.2241209

Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC (2021) Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front Immunol 12:683022. https://doi.org/10.3389/fimmu.2021.683022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamiloğlu A (2022) Functional and technological characterization of lactic acid bacteria isolated from Turkish dry-fermented sausage (sucuk). Braz J Microbiol 53(2):959–968. https://doi.org/10.1007/s42770-022-00708-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katayama T (2016) Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and Bifidobacteria. Biosci Biotechnol Biochem 80(4):621–32. https://doi.org/10.1080/09168451.2015.1132153

Article  CAS  PubMed  Google Scholar 

Khodayar-Pardo P, Mira-Pascual L, Collado MC, Martínez-Costa C (2014) Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol 34(8):599–605. https://doi.org/10.1038/jp.2014.47

Article  CAS  PubMed  Google Scholar 

Kosmerl E, Rocha-Mendoza D, Ortega-Anaya J, Jiménez-Flores R, García-Cano I (2021) Improving human health with milk fat globule membrane, lactic acid bacteria, and Bifidobacteria. Microorganisms 9(2). https://doi.org/10.3390/microorganisms9020341

Le Doare K, Holder B, Bassett A, Pannaraj PS (2018) Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 9:361. https://doi.org/10.3389/fimmu.2018.00361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee DH, Park HK, Lee HR, Sohn H, Sim S, Park HJ, Shin YS, Kim YK, Choi Y, Park HS (2022) Immunoregulatory effects of Lactococcus lactis-derived extracellular vesicles in allergic asthma. Clin Transl Allergy 12(3):e12138. https://doi.org/10.1002/clt2.12138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei Y, Zhang K, Guo M, Li G, Li C, Li B, Yang Y, Chen Y, Wang X (2018) Exploring the spatial-temporal microbiota of compound stomachs in a pre-weaned goat model. Front Microbiol 9:1846. https://doi.org/10.3389/fmicb.2018.01846

Article  PubMed  PubMed Central 

Comments (0)

No login
gif