Ackerman DL, Doster RS, Weitkamp JH, Aronoff DM, Gaddy JA, Townsend SD (2017) Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against group B Streptococcus. ACS Infect Dis 3(8):595–605. https://doi.org/10.1021/acsinfecdis.7b00064
Article CAS PubMed PubMed Central Google Scholar
Akinsoyinu AO, Mba AU, Olubajo FO (1977) Studies on milk yield and composition of the West African dwarf goat in Nigeria. J Dairy Res 44(1):57–62. https://doi.org/10.1017/s0022029900019920
Article CAS PubMed Google Scholar
Andreas NJ, Kampmann B, Le-Doare KM (2015) Human breast milk: a review on its composition and bioactivity. Early Hum Dev 91(11):629–635. https://doi.org/10.1016/j.earlhumdev.2015.08.013
Article CAS PubMed Google Scholar
Barreto ÍMLG, Urbano SA, Oliveira CAA, Macêdo CS, Borba LHF, Chags BME, Rangel AHN (2020) Chemical composition and lipid profile of mare colostrum and milk of the quarter horse breed. PLoS One 15(9):e0238921. https://doi.org/10.1371/journal.pone.0238921
Article CAS PubMed PubMed Central Google Scholar
Boix-Amorós A, Collado MC, Mira A (2016) Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 7:492. https://doi.org/10.3389/fmicb.2016.00492
Article PubMed PubMed Central Google Scholar
Brodin P (2022) Immune-microbe interactions early in life: a determinant of health and disease long term. Science 376(6596):945–950. https://doi.org/10.1126/science.abk2189
Article CAS PubMed Google Scholar
Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A (2012) The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 96(3):544–51. https://doi.org/10.3945/ajcn.112.037382
Article CAS PubMed Google Scholar
Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain JR (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164(5):859–871. https://doi.org/10.1016/j.cell.2016.01.024
Article CAS PubMed PubMed Central Google Scholar
Chen D, Zhao X, Li X, Wang J, Wang C (2018a) Milk compositional changes of Laoshan goat milk from partum up to 261 days postpartum. Anim Sci J 89(9):1355–1363. https://doi.org/10.1111/asj.13062
Article CAS PubMed Google Scholar
Chen PW, Lin YL, Huang MS (2018b) Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J Food Drug Anal 26(4):1235–1244. https://doi.org/10.1016/j.jfda.2018.03.004
Article PubMed PubMed Central Google Scholar
Chen W, Mi J, Lv N, Gao J, Cheng J, Wu R, Ma J, Lan T, Liao X (2018c) Lactation stage-dependency of the sow milk microbiota. Front Microbiol 9:945. https://doi.org/10.3389/fmicb.2018.00945
Article PubMed PubMed Central Google Scholar
Ding D, Wang M, Wu M, Gan C, Wu P (2021) Condition-specific molecular network analysis revealed that flagellar proteins are involved in electron transfer processes of Shewanella piezotolerans WP3. Genet Res (Camb) 2021:9953783. https://doi.org/10.1155/2021/9953783
Article CAS PubMed Google Scholar
Ferreira-Halder CV, Faria AVS, Andrade SS (2017) Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol 31(6):643–648. https://doi.org/10.1016/j.bpg.2017.09.011
Article CAS PubMed Google Scholar
Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA (2017) Systematic review of the human milk microbiota. Nutr Clin Pract 32(3):354–364. https://doi.org/10.1177/0884533616670150
Francino MP (2014) Early development of the gut microbiota and immune health. Pathogens 3(3):769–90. https://doi.org/10.3390/pathogens3030769
Article PubMed PubMed Central Google Scholar
Geng J, Jin W, Hao J, Huo M, Zhang Y, Xie C, Zhao B, Li Y (2021) Effects of dietary modified bazhen on reproductive performance, immunity, breast milk microbes, and metabolome characterization of Sows. Front Microbiol 12:758224. https://doi.org/10.3389/fmicb.2021.758224
Article PubMed PubMed Central Google Scholar
Guo J, Li P, Zhang K, Zhang L, Wang X, Li L, Zhang H (2020) Distinct stage changes in early-life colonization and acquisition of the gut microbiota and its correlations with volatile fatty acids in goat kids. Front Microbiol 11:584742. https://doi.org/10.3389/fmicb.2020.584742
Article PubMed PubMed Central Google Scholar
Han D, Yan Q, Liu J, Jiang Z, Yang S (2021) Transcriptomic analysis of Pediococcus pentosaceus reveals carbohydrate metabolic dynamics under lactic acid stress. Front Microbiol 12:736411. https://doi.org/10.3389/fmicb.2021.736411
Article PubMed PubMed Central Google Scholar
Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258. https://doi.org/10.1146/annurev.micro.61.080706.093257
Article CAS PubMed Google Scholar
Huertas-Díaz L, Kyhnau R, Ingribelli E, Neuzil-Bunesova V, Li Q, Sasaki M, Lauener RP, Roduit C, Frei R, Study Group CC, Sundekilde U, Schwab C (2023) Breastfeeding and the major fermentation metabolite lactate determine occurrence of Peptostreptococcaceae in infant feces. Gut Microbes 15(1):2241209. https://doi.org/10.1080/19490976.2023.2241209
Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC (2021) Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front Immunol 12:683022. https://doi.org/10.3389/fimmu.2021.683022
Article CAS PubMed PubMed Central Google Scholar
Kamiloğlu A (2022) Functional and technological characterization of lactic acid bacteria isolated from Turkish dry-fermented sausage (sucuk). Braz J Microbiol 53(2):959–968. https://doi.org/10.1007/s42770-022-00708-2
Article CAS PubMed PubMed Central Google Scholar
Katayama T (2016) Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and Bifidobacteria. Biosci Biotechnol Biochem 80(4):621–32. https://doi.org/10.1080/09168451.2015.1132153
Article CAS PubMed Google Scholar
Khodayar-Pardo P, Mira-Pascual L, Collado MC, Martínez-Costa C (2014) Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol 34(8):599–605. https://doi.org/10.1038/jp.2014.47
Article CAS PubMed Google Scholar
Kosmerl E, Rocha-Mendoza D, Ortega-Anaya J, Jiménez-Flores R, García-Cano I (2021) Improving human health with milk fat globule membrane, lactic acid bacteria, and Bifidobacteria. Microorganisms 9(2). https://doi.org/10.3390/microorganisms9020341
Le Doare K, Holder B, Bassett A, Pannaraj PS (2018) Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 9:361. https://doi.org/10.3389/fimmu.2018.00361
Article CAS PubMed PubMed Central Google Scholar
Lee DH, Park HK, Lee HR, Sohn H, Sim S, Park HJ, Shin YS, Kim YK, Choi Y, Park HS (2022) Immunoregulatory effects of Lactococcus lactis-derived extracellular vesicles in allergic asthma. Clin Transl Allergy 12(3):e12138. https://doi.org/10.1002/clt2.12138
Article CAS PubMed PubMed Central Google Scholar
Lei Y, Zhang K, Guo M, Li G, Li C, Li B, Yang Y, Chen Y, Wang X (2018) Exploring the spatial-temporal microbiota of compound stomachs in a pre-weaned goat model. Front Microbiol 9:1846. https://doi.org/10.3389/fmicb.2018.01846
Comments (0)