Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: subsets and functions in health and disease. Trends Immunol. 2021;42:920–36.
Article CAS PubMed Google Scholar
Rodda LB, Lu E, Bennett ML, Sokol CL, Wang X, Luther SA, et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity. 2018;48:1014–28.e6.
Article CAS PubMed PubMed Central Google Scholar
Takeda A, Salmi M, Jalkanen S. Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system. Trends Immunol. 2023;44:72–86.
Article CAS PubMed Google Scholar
Hons M, Sixt M. The lymph node filter revealed. Nat Immunol. 2015;16:338–40.
Article CAS PubMed Google Scholar
Bogoslowski A, Kubes P. Lymph Nodes: The Unrecognized Barrier against Pathogens. ACS Infect Dis. 2018;4:1158–61.
Article CAS PubMed Google Scholar
Cruz de Casas P, Knöpper K, Dey Sarkar R, Kastenmüller W Same yet different - how lymph node heterogeneity affects immune responses. Nat Rev Immunol. 2023.
Rantakari P, Auvinen K, Jäppinen N, Kapraali M, Valtonen J, Karikoski M, et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat Immunol. 2015;16:386–96.
Article CAS PubMed Google Scholar
Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A, Mebius RE, et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 2009;30:264–76.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Roth TL, Gray EE, Chen H, Rodda LB, Liang Y, et al. Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node. Elife. 2016;5.
Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature. 2007;450:110–4.
Article CAS PubMed Google Scholar
Sigal LJ Chapter Six - The Pathogenesis and Immunobiology of Mousepox. In: Alt FW, editor. Advances in Immunology. 129: Academic Press; 2016. 251-76.
Esteban DJ, Buller RML. Ectromelia virus: the causative agent of mousepox. J Gen Virol. 2005;86:2645–59.
Article CAS PubMed Google Scholar
Buller RM, Palumbo GJ. Poxvirus pathogenesis. Microbiol Rev. 1991;55:80–122.
Article CAS PubMed PubMed Central Google Scholar
Rosen JB, Arciuolo RJ, Pathela P, Boyer CB, Baumgartner J, Latash J, et al. JYNNEOS effectiveness as post-exposure prophylaxis against mpox: Challenges using real-world outbreak data. Vaccine. 2024;42:548–55.
Article CAS PubMed Google Scholar
Marchal J. Infectious ectromelia. A hitherto undescribed virus disease of mice. J Pathol Bacteriol. 1930;33:713–28.
McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014;58:260–7.
Laurenson-Schafer H, Sklenovská N, Hoxha A, Kerr SM, Ndumbi P, Fitzner J, et al. Description of the first global outbreak of mpox: an analysis of global surveillance data. Lancet Glob Health. 2023;11:e1012–e23.
Article CAS PubMed PubMed Central Google Scholar
Suthar MS, Diamond MS, Gale M Jr. West Nile virus infection and immunity. Nat Rev Microbiol. 2013;11:115–28.
Article CAS PubMed Google Scholar
Reynoso GV, Gordon DN, Kalia A, Aguilar CC, Malo CS, Aleshnick M, et al. Zika virus spreads through infection of lymph node-resident macrophages. Cell Rep. 2023;42:112126.
Article CAS PubMed PubMed Central Google Scholar
Calderón-Peláez M-A, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE Dengue Virus Infection of Blood–Brain Barrier Cells: Consequences of Severe Disease. Frontiers in Microbiology. 2019;10.
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2022;18:503–16.
Article CAS PubMed PubMed Central Google Scholar
Minor PD An Introduction to Poliovirus: Pathogenesis, Vaccination, and the Endgame for Global Eradication. In: Martín J, editor. Poliovirus: Methods and Protocols. New York, NY: Springer New York; 2016. 1-10.
Bodian D Mechanisms of infection with polioviruses. Cellular Biology Nucleic Acids and Viruses,(0 V St Whitelock, editor), New York, New York Academy of Sciences. 1957.
Racaniello VR. One hundred years of poliovirus pathogenesis. Virology. 2006;344:9–16.
Article CAS PubMed Google Scholar
Ida-Hosonuma M, Iwasaki T, Yoshikawa T, Nagata N, Sato Y, Sata T, et al. The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol. 2005;79:4460–9.
Article CAS PubMed PubMed Central Google Scholar
Fang M, Lanier LL, Sigal LJ. A role for NKG2D in NK cell-mediated resistance to poxvirus disease. PLoS Pathog. 2008;4:e30.
Article PubMed PubMed Central Google Scholar
Fang M, Orr MT, Spee P, Egebjerg T, Lanier LL, Sigal LJ. CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity. 2011;34:579–89.
Article CAS PubMed PubMed Central Google Scholar
Fang M, Roscoe F, Sigal LJ. Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med. 2010;207:2369–81.
Article CAS PubMed PubMed Central Google Scholar
Melo-Silva CR, Alves-Peixoto P, Heath N, Tang L, Montoya B, Knudson CJ, et al. Resistance to lethal ectromelia virus infection requires Type I interferon receptor in natural killer cells and monocytes but not in adaptive immune or parenchymal cells. PLoS Pathog. 2021;17:e1009593.
Article CAS PubMed PubMed Central Google Scholar
Wong E, Montoya B, Stotesbury C, Ferez M, Xu RH, Sigal LJ. Langerhans Cells Orchestrate the Protective Antiviral Innate Immune Response in the Lymph Node. Cell Rep. 2019;29:3047–59.e3.
Article CAS PubMed PubMed Central Google Scholar
Wong E, Xu RH, Rubio D, Lev A, Stotesbury C, Fang M, et al. Migratory Dendritic Cells, Group 1 Innate Lymphoid Cells, and Inflammatory Monocytes Collaborate to Recruit NK Cells to the Virus-Infected Lymph Node. Cell Rep. 2018;24:142–54.
Article CAS PubMed PubMed Central Google Scholar
Xu RH, Wong EB, Rubio D, Roscoe F, Ma X, Nair S, et al. Sequential Activation of Two Pathogen-Sensing Pathways Required for Type I Interferon Expression and Resistance to an Acute DNA Virus Infection. Immunity. 2015;43:1148–59.
Article CAS PubMed PubMed Central Google Scholar
Frederico B, Chao B, Lawler C, May JS, Stevenson PG. Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination. J Gen Virol. 2015;96:2314–27.
Article CAS PubMed PubMed Central Google Scholar
Iannacone M, Moseman EA, Tonti E, Bosurgi L, Junt T, Henrickson SE, et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature. 2010;465:1079–83.
Comments (0)