United Nations Department of Economic and Social Affairs, P.D. (2022) World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3
Sánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: a review of its drivers. Biological Conservation, 232, 8–27.
Caro, T., Rowe, Z., Berger, J., Wholey, P., & Dobson, A. (2022). An inconvenient misconception: climate change is not the principal driver of biodiversity loss. Conservation Letters. https://doi.org/10.1111/conl.12868
Allan, J. R., Possingham, H. P., Atkinson, S. C., Waldron, A., Marco, M., Di Butchart, S. H. M., Adams, V. M., Kissling, W. D., Worsdell, T., Sandbrook, C., et al. (2022). The minimum land area requiring conservation attention to safeguard biodiversity. Science, 376(6597), 1094–1101.
Article CAS PubMed Google Scholar
Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.
Beaumelle, L., Tison, L., Eisenhauer, N., Hines, J., Malladi, S., Pelosi, C., Thouvenot, L., & Phillips, H. R. P. (2023). Pesticide effects on soil fauna communities—a meta-analysis. Journal of Applied Ecology, 60, 1239.
Smit, A. B., Jager J. H., Manshanden, M., and Bremmer, J. (2021). Cost of crop protection measures. Study. Panel for the Future of Science and Technology, EPRS | European Parliamentary Research Service; Scientific Foresight Unit (STOA), PE 690.043. Brussels, Belgium. https://doi.org/10.2861/67868
Lopes, M. P., Fernandes, K. M., Tomé, H. V. V., Gonçalves, W. G., Miranda, F. R., Serrão, J. E., & Martins, G. F. (2018). Spinosad-mediated effects on the walking ability, midgut, and malpighian tubules of africanized honey bee workers. Pest Management Science, 74, 1311–1318. https://doi.org/10.1002/ps.4815
Article CAS PubMed Google Scholar
Mebane, C. A., Schmidt, T. S., Miller, J. L., & Balistrieri, L. S. (2020). Bioaccumulation and toxicity of cadmium, copper, nickel, and zinc and their mixtures to aquatic insect communities. Environmental Toxicology and Chemistry, 39, 812–833. https://doi.org/10.1002/etc.4663
Article CAS PubMed PubMed Central Google Scholar
Zamberlan, D. C., Halmenschelager, P. T., Silva, L. F. O., & da Rocha, J. B. T. (2020). Copper decreases associative learning and memory in drosophila melanogaster. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135306
Peña, N., Antón, A., Kamilaris, A., & Fantke, P. (2018). Modeling ecotoxicity impacts in vineyard production: addressing spatial differentiation for copper fungicides. Science of the Total Environment, 616–617, 796–804. https://doi.org/10.1016/j.scitotenv.2017.10.243
Article CAS PubMed Google Scholar
Barbosa, W. F., De Meyer, L., Guedes, R. N. C., & Smagghe, G. (2015). Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae). Ecotoxicology, 24, 130–142. https://doi.org/10.1007/s10646-014-1365-9
Article CAS PubMed Google Scholar
Arena, M., Auteri, D., Barmaz, S., Brancato, A., Brocca, D., Bura, L., Carrasco Cabrera, L., Chiusolo, A., Court Marques, D., Crivellente, F., et al. (2018). Peer review of the pesticide risk assessment of the active substance azadirachtin (margosa extract). EFSA Journal. https://doi.org/10.2903/j.efsa.2018.5234
Article PubMed PubMed Central Google Scholar
Gress, B. E., & Zalom, F. G. (2019). Identification and risk assessment of spinosad resistance in a california population of Drosophila suzukii. Pest Management Science, 75, 1270–1276. https://doi.org/10.1002/ps.5240
Article CAS PubMed Google Scholar
Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. https://doi.org/10.3390/molecules23040795
Article PubMed PubMed Central Google Scholar
Perry, T., McKenzie, J. A., & Batterham, P. (2007). A D α 6 knockout strain of drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochemistry and Molecular Biology, 37, 184–188. https://doi.org/10.1016/j.ibmb.2006.11.009
Article CAS PubMed Google Scholar
Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G. P., & Hamblin, M. R. (2017). Photoantimicrobials—are we afraid of the light? The Lancet Infectious Diseases, 17, e49–e55. https://doi.org/10.1016/S1473-3099(16)30268-7
Glueck, M., Hamminger, C., Fefer, M., Liu, J., & Plaetzer, K. (2019). Save the crop: photodynamic inactivation of plant pathogens I: bacteria. Photochemical and Photobiological Sciences, 18, 1700–1708. https://doi.org/10.1039/c9pp00128j
Article CAS PubMed Google Scholar
Hamminger, C., Glueck, M., Fefer, M., Ckurshumova, W., Liu, J., Tenhaken, R., & Plaetzer, K. (2022). Photodynamic inactivation of plant pathogens part II: fungi. Photochemical and Photobiological Sciences. https://doi.org/10.1007/s43630-021-00157-0
Wimmer, A., Glueck, M., Ckurshumova, W., Liu, J., Fefer, M., & Plaetzer, K. (2022). Breaking the rebellion: photodynamic inactivation against Erwinia amylovora resistant to streptomycin. Antibiotics, 11, 544. https://doi.org/10.3390/antibiotics11050544
Article CAS PubMed PubMed Central Google Scholar
Gonzales, J. C., Brancini, G. T. P., Rodrigues, G. B., Silva-Junior, G. J., Bachmann, L., Wainwright, M., & Braga, G. Ú. L. (2017). Photodynamic inactivation of conidia of the fungus colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 176, 54–61. https://doi.org/10.1016/j.jphotobiol.2017.09.008
Article CAS PubMed Google Scholar
De Menezes, H. D., Pereira, A. C., Brancini, G. T. P., De Leão, H. C., Massola Júnior, N. S., Bachmann, L., Wainwright, M., Bastos, J. K., & Braga, G. U. L. (2014). Furocoumarins and coumarins photoinactivate Colletotrichum acutatum and Aspergillus nidulans fungi under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 131, 74–83.
Braga, G. Ú. L., Silva-Junior, G. J., Brancini, G. T. P., Hallsworth, J. E., & Wainwright, M. (2022). Photoantimicrobials in agriculture. Journal of Photochemistry and Photobiology B: Biology, 235, 112548.
Article CAS PubMed Google Scholar
Dondji, B., Duchon, S., Diabate, A., Herve, J. P., Corbel, V., Hougard, J. M., Santus, R., & Schrevel, J. (2005). Assessment of laboratory and field assays of sunlight-induced killing of mosquito larvae by photosensitizers. Journal of Medical Entomology, 42, 652–656. https://doi.org/10.1093/jmedent/42.4.652
Article CAS PubMed Google Scholar
Shiao, S. H., Weng, S. C., Luan, L., Da Graça, H., Vicente, M., Jiang, X. J., Ng, D. K. P., Kolli, B. K., & Chang, K. P. (2019). Novel phthalocyanines activated by dim light for mosquito larva- and cell-inactivation with inference for their potential as broadspectrum photodynamic insecticides. PLoS One, 14, 1–17. https://doi.org/10.1371/journal.pone.0217355
Elhadad, H. A., El-Habet, B. A., Azab, R. M., Abu, H. M., Einin, El., Lotfy, W. M., & Atef, H. A. (2018). Effect of chlorophyllin on biomphalaria alexandrina snails and schistosoma mansoni larvae. International Journal of Current Microbiology and Applied Sciences, 7, 3725–3736.
Singh, K., Singh, D. K., & Singh, V. K. (2017). Chlorophyllin treatment against the snail Lymnaea acuminata: a new tool in fasciolosis control. Pharmacognosy Journal, 9, 594–598. https://doi.org/10.5530/pj.2017.5.94
Mamdouh Nassar, S., Mahamed Elgendy, A., & El-Tayeb, T. A. (2021). Assessment of chlorophyll phototoxicity on honey bee, Apis mellifera (Hymenoptera: Apidae). Journal of the Egyptian Society of Parasitology, 51, 63–72.
Abd El-Rahman, S. F., Ahmed, S. S., & Abdel Kader, M. H. (2020). Toxicological, biological and biochemical effects of two nanocomposites on cotton leaf worm, Spodoptera littoralis (Boisduval, 1833). Polish Journal of Entomology, 89, 101–112. https://doi.org/10.5604/01.3001.0014.2319
Abd El-Naby, S. (2019). Toxicity of chlorophyllin compound on field and susceptible strains of Spodoptera littoralis, and its biochemical impact on Α, Β and acetylcholin- esterases. Egyptian Journal of Agricultural Research, 97, 89–100. https://doi.org/10.21608/ejar.2019.68567
Mohammed, S. H., Baz, M. M., Ibrahim, M., Radwan, I. T., Selim, A., Dawood, A. F. D., Taie, H. A. A., Abdalla, S., & Khater, H. F. (2023). Acaricide resistance and novel photosensitizing approach as alternative acaricides against the camel tick Hyalomma Dromedarii. Photochemical and Photobiological Sciences, 22, 87–101. https://doi.org/10.1007/s43630-022-00301-4
Comments (0)