de Oliveira, E. F., Tosati, J. V., Tikekar, R. V., Monteiro, A. R., & Nitin, N. (2018). Antimicrobial activity of curcumin in combination with light against Escherichia coli O157: H7 and Listeria innocua: applications for fresh produce sanitation. Postharvest Biology and Technology, 137, 86–94.
Ghate, V. S., Zhou, W., & Yuk, H. G. (2019). Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Comprehensive Reviews in Food Science and Food Safety, 18(2), 402–424.
Majiya, H., & Galstyan, A. (2020). Dye extract of calyces of Hibiscus sabdariffa has photodynamic antibacterial activity: A prospect for sunlight-driven fresh produce sanitation. Food Science & Nutrition, 8(7), 3200–3211.
Majiya, H., & Galstyan, A. (2023). Potential of a methanolic extract of Lawsonia inermis (L.) leaf as an alternative sanitiser in the time of COVID-19 pandemic and beyond. Journal of Herbal Medicine, 38, 100633.
Article PubMed PubMed Central Google Scholar
Zhu, S., Song, Y., Pei, J., Xue, F., Cui, X., Xiong, X., & Li, C. (2021). The application of photodynamic inactivation to microorganisms in food. Food Chemistry: X, 12, 100150.
Ponzio, R. A., Ibarra, L. E., Achilli, E. E., Odella, E., Chesta, C. A., Martínez, S. R., & Palacios, R. E. (2022). Sweet light o’mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. Journal of Photochemistry and Photobiology B: Biology, 234, 112510.
Article CAS PubMed Google Scholar
Foresto, E., Gilardi, P., Ibarra, L. E., & Cogno, I. S. (2021). Light-activated green drugs: How we can use them in photodynamic therapy and mass-produce them with biotechnological tools. Phytomedicine Plus, 1(3), 100044.
Polat, E., & Kang, K. (2021). Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines, 9(6), 584.
Article CAS PubMed PubMed Central Google Scholar
Winter, S., Tortik, N., Kubin, A., Krammer, B., & Plaetzer, K. (2013). Back to the roots: Photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer. Photochemical & Photobiological Sciences, 12(10), 1795–1802.
Luksiene, Z., & Paskeviciute, E. (2011). Novel approach to the microbial decontamination of strawberries: Chlorophyllin-based photosensitization. Journal of Applied Microbiology, 110(5), 1274–1283.
Article CAS PubMed Google Scholar
Luksiene, Z., & Brovko, L. (2013). Antibacterial photosensitization-based treatment for food safety. Food Engineering Reviews, 5(4), 185–199.
Maisch, T., Spannberger, F., Regensburger, J., Felgenträger, A., & Bäumler, W. (2012). Fast and effective: Intense pulse light photodynamic inactivation of bacteria. Journal of Industrial Microbiology & Biotechnology, 39(7), 1013–1021.
Tavares, A., Dias, S. R. S., Carvalho, C. M. B., Faustino, M. A. F., Tomé, J. P. C., Neves, M. G. P. M. S., & Almeida, A. (2011). Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochemical & Photobiological Sciences, 10(10), 1659–1669.
Costa, L., Carvalho, C. M. B., Faustino, M. A. F., Neves, M. G. P. M. S., Tomé, J. P. C., Tomé, A. C., & Almeida, A. (2010). Sewage bacteriophage inactivation by cationic porphyrins: Influence of light parameters. Photochemical & Photobiological Sciences, 9(8), 1126–1133.
Randazzo, W., Aznar, R., & Sánchez, G. (2016). Curcumin-mediated photodynamic inactivation of norovirus surrogates. Food and Environmental Virology, 8(4), 244–250.
Article CAS PubMed Google Scholar
Ilori, O. O., & Odukoya, O. A. (2005). Hibiscus sabdarifa and sorghum bicolor as natural colorants. Electronic Journal of Environmental, Agricultural and Food Chemistry, 4, 858–862.
Geera, B., Ojwang, L. O., & Awika, J. M. (2012). New highly stable dimeric 3-deoxyanthocyanidin pigments from Sorghum bicolor leaf sheath. Journal of Food Science, 77(5), C566–C572.
Article CAS PubMed Google Scholar
Ekwealor, C. C., & Oyeka, C. A. (2015). In vitro anti dermatophyte activities of crude methanol and aqueous extracts of Lawsonia inermis. International Journal of Pharmaceutical Science and Drug Research, 7, 59–62.
Chaudhary, G., Goyal, S., & Poonia, P. (2010). Lawsonia inermis Linnaeus: A phytopharmacological review. International Journal of Pharmaceutical Science and Drug Research, 2(2), 91–98.
Sharma, R. K., & Goel, A. (2018). Identification of phytoconstituents in Lawsonia inermis Linn. leaves extract by GC-MS and their antibacterial potential. Pharmacognosy Journal, 10, 6.
Theodoro, L. H., Ferro-Alves, M. L., Longo, M., Nuernberg, M. A. A., Ferreira, R. P., Andreati, A., & Garcia, V. G. (2017). Curcumin photodynamic effect in the treatment of the induced periodontitis in rats. Lasers in Medical Science, 32(8), 1783–1791.
Tortik, N., Spaeth, A., & Plaetzer, K. (2014). Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin. Photochemical & Photobiological Sciences, 13, 1402–1409.
Tortik, N., Steinbacher, P., Maisch, T., Spaeth, A., & Plaetzer, K. (2016). A comparative study on the antibacterial photodynamic efficiency of a curcumin derivative and a formulation on a porcine skin model. Photochemical & Photobiological Sciences, 15, 187–195.
Araújo, N. C., Fontana, C. R., Gerbi, M. E. M., & Bagnato, V. S. (2012). Overall-mouth disinfection by photodynamic therapy using curcumin. Photomedicine and laser surgery, 30(2), 96–101.
Paschoal, M. A., Tonon, C. C., Spolidório, D. M., Bagnato, V. S., Giusti, J. S., & Santos-Pinto, L. (2013). Photodynamic potential of curcumin and blue LED against Streptococcus mutans in a planktonic culture. Photodiagnosis and photodynamic therapy, 10(3), 313–319.
Article CAS PubMed Google Scholar
Wu, J., Hou, W., Cao, B., Zuo, T., Xue, C., Leung, A. W., & Tang, Q. J. (2015). Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis and Photodynamic Therapy, 12(3), 385–392.
Article CAS PubMed Google Scholar
Santezi, C., Tanomaru, J. M., Bagnato, V. S., Júnior, O. B. O., & Dovigo, L. N. (2016). Potential of curcumin-mediated photodynamic inactivation to reduce oral colonization. Photodiagnosis and Photodynamic Therapy, 15, 46–52.
Article CAS PubMed Google Scholar
Abou-Arab, A. A., Abu-Salem, F. M., & Abou-Arab, E. A. (2011). Physicochemical properties of natural pigments (anthocyanin) extracted from Roselle calyces (Hibiscus subdariffa). Journal of American Science, 7(7), 445–456.
Galstyan, A., Ricker, A., Nüsse, H., Klingauf, J., & Dobrindt, U. (2019). Exploring the impact of coordination-driven self assembly on the antibacterial activity of low-symmetry phthalocyanines. ACS Applied Bio Materials, 3(1), 400–411.
Ghate, V., Kumar, A., Zhou, W., & Yuk, H. G. (2015). Effect of organic acids on the photodynamic inactivation of selected foodborne pathogens using 461 nm LEDs. Food Control, 57, 333–340.
Comments (0)