Shoshan MC, Linder S. Target specificity and off-target effects as determinants of cancer drug efficacy. Expert Opin Drug Metab Toxicol. 2008;4:273–80. https://doi.org/10.1517/17425255.4.3.273
Article CAS PubMed Google Scholar
Sahoo S, Kariya T, Ishikawa K. Targeted delivery of therapeutic agents to the heart. Nat Rev Cardiol. 2021;18:389–99. https://doi.org/10.1038/s41569-020-00499-9
Article PubMed PubMed Central Google Scholar
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18:3–19. https://doi.org/10.1158/1541-7786.Mcr-19-0582
Article CAS PubMed Google Scholar
Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, et al. Antibody-drug conjugates: Current status and future directions. Drug Discov Today. 2014;19:869–81. https://doi.org/10.1016/j.drudis.2013.11.004
Article CAS PubMed Google Scholar
Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Rel. 2011;153:198–205. https://doi.org/10.1016/j.jconrel.2011.06.001
Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, et al. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: Opportunities and emerging strategies. Acta Pharm Sin B. 2021;11:2798–818. https://doi.org/10.1016/j.apsb.2020.11.003
Article CAS PubMed Google Scholar
Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 2000;41:147–62. https://doi.org/10.1016/s0169-409x(99)00062-9
Article CAS PubMed Google Scholar
Young O, Ngo N, Lin L, Stanbery L, Creeden JF, Hamouda D, et al. Folate receptor as a biomarker and therapeutic target in solid tumors. Curr Probl Cancer. 2023;47:100917 https://doi.org/10.1016/j.currproblcancer.2022.100917
Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020;17:349–59. https://doi.org/10.1038/s41571-020-0339-5
Xia W, Low PS. Folate-targeted therapies for cancer. J Med Chem. 2010;53:6811–24. https://doi.org/10.1021/jm100509v
Article CAS PubMed Google Scholar
Vlahov IR, Leamon CP. Engineering folate-drug conjugates to target cancer: from chemistry to clinic. Bioconjug Chem. 2012;23:1357–69. https://doi.org/10.1021/bc2005522
Article CAS PubMed Google Scholar
Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41:120–9. https://doi.org/10.1021/ar7000815
Article CAS PubMed Google Scholar
Poh S, Putt KS, Low PS. Folate-targeted dendrimers selectively accumulate at sites of inflammation in mouse models of ulcerative Colitis and Atherosclerosis. Biomacromolecules. 2017;18:3082–8. https://doi.org/10.1021/acs.biomac.7b00728
Article CAS PubMed Google Scholar
De La Cruz LK, Yang X, Menshikh A, Brewer M, Lu W, Wang M, et al. Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chem Sci. 2021;12:10649–54. https://doi.org/10.1039/d1sc02711e
Article CAS PubMed Google Scholar
Ji X, Zhou C, Ji K, Aghoghovbia RE, Pan Z, Chittavong V, et al. Click and release: a chemical strategy toward developing gasotransmitter prodrugs by using an intramolecular Diels-Alder reaction. Angew Chem Int Ed Engl. 2016;55:15846–51. https://doi.org/10.1002/anie.201608732
Article CAS PubMed Google Scholar
Wang B, Otterbein LE. Carbon monoxide in drug discovery: basics, pharmacology, and therapeutic potential. John Wiley & Sons; 2022.
Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422–8. https://doi.org/10.1038/74680
Article CAS PubMed Google Scholar
Ji X, Pan Z, Li C, Kang T, De La Cruz LKC, Yang L, et al. Esterase-sensitive and pH-controlled carbon monoxide prodrugs for treating systemic inflammation. J Med Chem. 2019;62:3163–8. https://doi.org/10.1021/acs.jmedchem.9b00073
Article CAS PubMed Google Scholar
Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol. 1999;276:L688–94. https://doi.org/10.1152/ajplung.1999.276.4.L688
Article CAS PubMed Google Scholar
Kyokane T, Norimizu S, Taniai H, Yamaguchi T, Takeoka S, Tsuchida E, et al. Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver. Gastroenterology. 2001;120:1227–40. https://doi.org/10.1053/gast.2001.23249
Article CAS PubMed Google Scholar
Zuckerbraun BS, Billiar TR, Otterbein SL, Kim PK, Liu F, Choi AM, et al. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J Exp Med. 2003;198:1707–16. https://doi.org/10.1084/jem.20031003
Article CAS PubMed PubMed Central Google Scholar
Correa-Costa M, Gallo D, Csizmadia E, Gomperts E, Lieberum JL, Hauser CJ, et al. Carbon monoxide protects the kidney through the central circadian clock and CD39. Proc Natl Acad Sci USA. 2018;115:E2302–e10. https://doi.org/10.1073/pnas.1716747115
Article CAS PubMed PubMed Central Google Scholar
Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N, et al. Carbon monoxide-loaded red blood cell prevents the onset of cisplatin-induced acute kidney injury. Antioxidants. 2023;12. https://doi.org/10.3390/antiox12091705.
Zhang T, Zhang G, Chen X, Chen Z, Tan AY, Lin A, et al. Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells. Cancer Lett. 2022;546:215831 https://doi.org/10.1016/j.canlet.2022.215831
Article CAS PubMed Google Scholar
Romao CC, Blattler WA, Seixas JD, Bernardes GJ. Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev. 2012;41:3571–83. https://doi.org/10.1039/c2cs15317c
Article CAS PubMed Google Scholar
Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728–43. https://doi.org/10.1038/nrd3228
Article CAS PubMed Google Scholar
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon monoxide and its controlled release: therapeutic application, detection, and development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem. 2018;61:2611–35. https://doi.org/10.1021/acs.jmedchem.6b01153
Article CAS PubMed Google Scholar
Bauer N, Yuan Z, Yang X, Wang B. Plight of CORMs: The unreliability of four commercially available CO-releasing molecules, CORM-2, CORM-3, CORM-A1, and CORM-401, in studying CO biology. Biochem Pharmacol. 2023;214:115642 https://doi.org/10.1016/j.bcp.2023.115642
Article CAS PubMed Google Scholar
Alghazwat O, Talebzadeh S, Oyer J, Copik A, Liao Y. Ultrasound responsive carbon monoxide releasing micelle. Ultrason Sonochem. 2021;72:105427 https://doi.org/10.1016/j.ultsonch.2020.105427
Article CAS PubMed Google Scholar
Stamellou E, Storz D, Botov S, Ntasis E, Wedel J, Sollazzo S, et al. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation. Redox Biol. 2014;2:739–48. https://doi.org/10.1016/j.redox.2014.06.002
Comments (0)