Folate-conjugated organic CO prodrugs: Synthesis and CO release kinetic studies

Shoshan MC, Linder S. Target specificity and off-target effects as determinants of cancer drug efficacy. Expert Opin Drug Metab Toxicol. 2008;4:273–80. https://doi.org/10.1517/17425255.4.3.273

Article  CAS  PubMed  Google Scholar 

Sahoo S, Kariya T, Ishikawa K. Targeted delivery of therapeutic agents to the heart. Nat Rev Cardiol. 2021;18:389–99. https://doi.org/10.1038/s41569-020-00499-9

Article  PubMed  PubMed Central  Google Scholar 

Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18:3–19. https://doi.org/10.1158/1541-7786.Mcr-19-0582

Article  CAS  PubMed  Google Scholar 

Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, et al. Antibody-drug conjugates: Current status and future directions. Drug Discov Today. 2014;19:869–81. https://doi.org/10.1016/j.drudis.2013.11.004

Article  CAS  PubMed  Google Scholar 

Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Rel. 2011;153:198–205. https://doi.org/10.1016/j.jconrel.2011.06.001

Article  CAS  Google Scholar 

Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, et al. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: Opportunities and emerging strategies. Acta Pharm Sin B. 2021;11:2798–818. https://doi.org/10.1016/j.apsb.2020.11.003

Article  CAS  PubMed  Google Scholar 

Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 2000;41:147–62. https://doi.org/10.1016/s0169-409x(99)00062-9

Article  CAS  PubMed  Google Scholar 

Young O, Ngo N, Lin L, Stanbery L, Creeden JF, Hamouda D, et al. Folate receptor as a biomarker and therapeutic target in solid tumors. Curr Probl Cancer. 2023;47:100917 https://doi.org/10.1016/j.currproblcancer.2022.100917

Article  PubMed  Google Scholar 

Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020;17:349–59. https://doi.org/10.1038/s41571-020-0339-5

Article  PubMed  Google Scholar 

Xia W, Low PS. Folate-targeted therapies for cancer. J Med Chem. 2010;53:6811–24. https://doi.org/10.1021/jm100509v

Article  CAS  PubMed  Google Scholar 

Vlahov IR, Leamon CP. Engineering folate-drug conjugates to target cancer: from chemistry to clinic. Bioconjug Chem. 2012;23:1357–69. https://doi.org/10.1021/bc2005522

Article  CAS  PubMed  Google Scholar 

Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41:120–9. https://doi.org/10.1021/ar7000815

Article  CAS  PubMed  Google Scholar 

Poh S, Putt KS, Low PS. Folate-targeted dendrimers selectively accumulate at sites of inflammation in mouse models of ulcerative Colitis and Atherosclerosis. Biomacromolecules. 2017;18:3082–8. https://doi.org/10.1021/acs.biomac.7b00728

Article  CAS  PubMed  Google Scholar 

De La Cruz LK, Yang X, Menshikh A, Brewer M, Lu W, Wang M, et al. Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chem Sci. 2021;12:10649–54. https://doi.org/10.1039/d1sc02711e

Article  CAS  PubMed  Google Scholar 

Ji X, Zhou C, Ji K, Aghoghovbia RE, Pan Z, Chittavong V, et al. Click and release: a chemical strategy toward developing gasotransmitter prodrugs by using an intramolecular Diels-Alder reaction. Angew Chem Int Ed Engl. 2016;55:15846–51. https://doi.org/10.1002/anie.201608732

Article  CAS  PubMed  Google Scholar 

Wang B, Otterbein LE. Carbon monoxide in drug discovery: basics, pharmacology, and therapeutic potential. John Wiley & Sons; 2022.

Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422–8. https://doi.org/10.1038/74680

Article  CAS  PubMed  Google Scholar 

Ji X, Pan Z, Li C, Kang T, De La Cruz LKC, Yang L, et al. Esterase-sensitive and pH-controlled carbon monoxide prodrugs for treating systemic inflammation. J Med Chem. 2019;62:3163–8. https://doi.org/10.1021/acs.jmedchem.9b00073

Article  CAS  PubMed  Google Scholar 

Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol. 1999;276:L688–94. https://doi.org/10.1152/ajplung.1999.276.4.L688

Article  CAS  PubMed  Google Scholar 

Kyokane T, Norimizu S, Taniai H, Yamaguchi T, Takeoka S, Tsuchida E, et al. Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver. Gastroenterology. 2001;120:1227–40. https://doi.org/10.1053/gast.2001.23249

Article  CAS  PubMed  Google Scholar 

Zuckerbraun BS, Billiar TR, Otterbein SL, Kim PK, Liu F, Choi AM, et al. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J Exp Med. 2003;198:1707–16. https://doi.org/10.1084/jem.20031003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Correa-Costa M, Gallo D, Csizmadia E, Gomperts E, Lieberum JL, Hauser CJ, et al. Carbon monoxide protects the kidney through the central circadian clock and CD39. Proc Natl Acad Sci USA. 2018;115:E2302–e10. https://doi.org/10.1073/pnas.1716747115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N, et al. Carbon monoxide-loaded red blood cell prevents the onset of cisplatin-induced acute kidney injury. Antioxidants. 2023;12. https://doi.org/10.3390/antiox12091705.

Zhang T, Zhang G, Chen X, Chen Z, Tan AY, Lin A, et al. Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells. Cancer Lett. 2022;546:215831 https://doi.org/10.1016/j.canlet.2022.215831

Article  CAS  PubMed  Google Scholar 

Romao CC, Blattler WA, Seixas JD, Bernardes GJ. Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev. 2012;41:3571–83. https://doi.org/10.1039/c2cs15317c

Article  CAS  PubMed  Google Scholar 

Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728–43. https://doi.org/10.1038/nrd3228

Article  CAS  PubMed  Google Scholar 

Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon monoxide and its controlled release: therapeutic application, detection, and development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem. 2018;61:2611–35. https://doi.org/10.1021/acs.jmedchem.6b01153

Article  CAS  PubMed  Google Scholar 

Bauer N, Yuan Z, Yang X, Wang B. Plight of CORMs: The unreliability of four commercially available CO-releasing molecules, CORM-2, CORM-3, CORM-A1, and CORM-401, in studying CO biology. Biochem Pharmacol. 2023;214:115642 https://doi.org/10.1016/j.bcp.2023.115642

Article  CAS  PubMed  Google Scholar 

Alghazwat O, Talebzadeh S, Oyer J, Copik A, Liao Y. Ultrasound responsive carbon monoxide releasing micelle. Ultrason Sonochem. 2021;72:105427 https://doi.org/10.1016/j.ultsonch.2020.105427

Article  CAS  PubMed  Google Scholar 

Stamellou E, Storz D, Botov S, Ntasis E, Wedel J, Sollazzo S, et al. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation. Redox Biol. 2014;2:739–48. https://doi.org/10.1016/j.redox.2014.06.002

Article  CAS  PubMed 

Comments (0)

No login
gif