Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res. 2022;86(1): 101158.
Article CAS PubMed PubMed Central Google Scholar
Cerminati S, Paoletti L, Aguirre A, Peirú S, Menzella HG, Castelli ME. Industrial uses of phospholipases: current state and future applications. Appl Microbiol Biotechnol. 2019;103(6):2571–82.
Article CAS PubMed Google Scholar
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: function, and therapeutics. Prog Lipid Res. 2020;78(3): 101018.
Article CAS PubMed Google Scholar
Balboa MA, Balsinde J. Phospholipases: from structure to biological function. Biomolecules. 2021;11(3):428.
Article CAS PubMed PubMed Central Google Scholar
Kanemaru K, Nakamura Y. Activation mechanisms and diverse functions of mammalian phospholipase C. Biomolecules. 2023;13(6):915.
Article CAS PubMed PubMed Central Google Scholar
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother. 2021;139(1): 111610.
Article CAS PubMed Google Scholar
Liu SJ, Wen Q, Tang LJ, Jiang JH. Phospholipid−graphene nanoassembly as a fluorescence biosensor for sensitive detection of phospholipase D activity. Anal Chem. 2012;84(14):5944–50.
Article CAS PubMed Google Scholar
Zhu X, Fan L, Wang S, Lei C, Huang Y, Nie Z, Yao S. Phospholipid-tailored titanium carbide nanosheets as a novel fluorescent nanoprobe for activity assay and imaging of phospholipase D. Anal Chem. 2018;90(11):6742–8.
Article CAS PubMed Google Scholar
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev. 2011;111(10):6130–85.
Article CAS PubMed PubMed Central Google Scholar
Shi D, Feng C, Xie J, Zhang X, Dai H, Yan L. Recent progress of nanomedicine in secreted phospholipase A2 as a potential therapeutic target. J Mater Chem B. 2022;10(37):7349–60.
Article CAS PubMed Google Scholar
Hossain S, Pai KR, Piyasena ME. Fluorescent lipo-beads for the sensitive detection of phospholipase A2 and its inhibitors. ACS Biomater Sci Eng. 2020;6(4):1989–97.
Article CAS PubMed PubMed Central Google Scholar
Zuliani G, Marsillach J, Trentini A, Rosta V, Cervellati C. Lipoprotein-associated phospholipase A2 activity as potential biomarker of vascular dementia. Antioxidants. 2023;12(3):597.
Article CAS PubMed PubMed Central Google Scholar
Zhang Q, Fang RH, Gao W, Zhang L. A biomimetic nanoparticle to “lure and kill” phospholipase A2. Angew Chem Int Ed. 2020;59(26):10461–5.
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A2 family. Immunol Rev. 2023;317(1):42–70.
Article CAS PubMed Google Scholar
Topbas C, Swick A, Razavi M, Anderson NL, Pearson TW, Bystrom C. Measurement of lipoprotein-associated phospholipase A2 by use of 3 different methods: exploration of discordance between ELISA and activity assays. Clin Chem. 2018;64(4):697–704.
Article CAS PubMed Google Scholar
Guo C, Zhang Y, Li Y, Xu S, Wang L. 19F MRI nanoprobes for the turn-on detection of phospholipase A2 with a low background. Anal Chem. 2019;91(13):8147–53.
Article CAS PubMed Google Scholar
Alberti D, Thiaudiere E, Parzy E, Elkhanoufi S, Rakhshan S, Stefania R, Massot P, Mellet P, Aime S, Crich SG. 4-Amino-TEMPO loaded liposomes as sensitive EPR and OMRI probes for the detection of phospholipase A2 activity. Sci Rep. 2023;13(1):13725.
Article ADS CAS PubMed PubMed Central Google Scholar
Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Khan S, Tyreman M, Stevens MM. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano. 2015;9(3):2565–73.
Article CAS PubMed PubMed Central Google Scholar
Kumari S, Gupta OP, Kumar S, Sasi M, Arpitha SR, Amirtham D, Mishra CB, Thimmegowda V, Krishnan V, Sachdev A, Kumar RR, Dahuja A. A novel continuous enzyme coupled colorimetric assay for phospholipase A2 and its application in the determination of catalytic activity of oil-body–associated oleosin protein. Food Anal Methods. 2022;15(5):2155–62.
Zhang Y, Ai J, Dong Y, Zhang S, Gao Q, Qi H, Zhang C, Cheng Z. Combining 3D graphene-like screen-printed carbon electrode with methylene blue-loaded liposomal nanoprobes for phospholipase A2 detection. Biosens Bioelectron. 2019;126:255–60.
Article CAS PubMed Google Scholar
Wang L, Liu Y, Yan J, Li H, Tu Y. Novel electrochemiluminescent immunosensor using dual amplified signals from a CoFe prussian blue analogue and Au nanoparticle for the detection of Lp-PLA2. ACS Sens. 2023;8(7):2859–68.
Article CAS PubMed Google Scholar
Sagar R, Lou J, Best MD. Development of a bis-pyrene phospholipid probe for fluorometric detection of phospholipase A2 inhibition. Bioorg Med Chem. 2023;87(7): 117301.
Article CAS PubMed Google Scholar
Ng CY, Kwok TXW, Tan FCK, Low CM, Lam Y. Fluorogenic probes to monitor cytosolic phospholipase A2 activity. Chem Commun. 2017;53(11):1813–6.
Ye Q, Dai T, Shen J, Xu Q, Hu X, Shu Y. Incorporation of fluorescent carbon quantum dots into metal-organic frameworks with peroxidase-mimicking activity for high-performance ratiometric fluorescent biosensing. J Anal Test. 2023;7(18):16–24.
Zhang TT, Chen ZH, Shi GY, Zhang M. Eu3+-doped bovine serum albumin-derived carbon dots for ratiometric fluorescent detection of tetracycline. J Anal Test. 2022;6(6):365–73.
Zhang Y, Wu W, Zhang J, Li Z, Ma H, Zhao Z. Facile method for specifically sensing sphingomyelinase in cells and human urine based on a ratiometric fluorescent nanoliposome probe. Anal Chem. 2021;93(34):11775–84.
Article CAS PubMed Google Scholar
Sun Z, Huang H, Zhang R, Yang X, Yang H, Li C, Zhang Y, Wang Q. Activatable rare earth near-infrared-II fluorescence ratiometric nanoprobes. Nano Lett. 2021;21(15):6576–83.
Article ADS CAS PubMed Google Scholar
Wang D, Shi Y, Hong Z, Li T. Alkylpolyglycoside doped semiconducting polymer nanoparticles for ratiometric fluorescence detection of riboflavin. Chin J Anal Lab. 2022;41(6):678–84.
Zhai H, Sun D, Zhang X, Gao M. Construction of a novel fluorescence ratiometric sensor and its detection for ascorbic acid. Chin J Anal Lab. 2022;41(11):1269–73.
Yang X, Li J, Zhang S, Li C, Ma J. Amplification-free, single-microbead-based Cas12a assay for one-step DNA detection at the single-molecule level. Anal Chem. 2022;94(38):13076–83.
Article CAS PubMed Google Scholar
Verma S, Dhenadhayalan N, Lin KC. Study of cholesterol phase effect on the dynamics of DOPC and DPPC small vesicle membranes using single-molecule fluorescence correlation spectroscopy. J Mol Liq. 2022;353(1): 118806.
Perez MA, Beales PA. Biomimetic curvature and tension-driven membrane fusion induced by silica nanoparticles. Langmuir. 2021;37(47):13917–31.
Yektaeian N, Mehrabani D, Sepaskhah M, Zare S, Jamhiri I, Hatam G. Lipophilic tracer Dil and fluorescence labeling of acridine orange used for Leishmania major tracing in the fibroblast cells. Heliyon. 2019;5(12): e03073.
Article PubMed PubMed Central Google Scholar
Trindade IC, Pound-Lana G, Pereira DJS, Oliveira LAM, Andrade MS, Vilela JMC, Postacchini BB, Mosqueira VCF. Mechanisms of interaction of biodegradable polyester nanocapsules with non-phagocytic cells. Eur J Pharm Sci. 2018;124:89–104.
Article CAS PubMed Google Scholar
Jensen KHR, Berg RW. CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Sci Rep. 2016;6(1):32674.
Article ADS CAS PubMed PubMed Central Google Scholar
Zhou P, Lv P, Yu L, Liu S, Zhang L, Tian C. Fluorescence lifetime based distance measurement illustrates conformation changes of PYL10-CL2 upon ABA binding in solution state. Chin Chem Lett. 2019;30(5):1067–70.
Comments (0)